268 research outputs found

    Atomic site sensitive processes in low energy ion-dimer collisions

    Get PDF
    Electron capture processes for low energy Ar9+ ions colliding on Ar2 dimer targets are investigated, focusing attention on charge sharing as a function of molecule orientation and impact parameter. A preference in charge-asymmetric dissociation channels is observed, with a strong correlation between the projectile scattering angle and the molecular ion orientation. The measurements provide here clear evidences that projectiles distinguish each atom in the target and, that electron capture from near-site atom is favored. Monte Carlo calculations based on the classical over-the-barrier model, with dimer targets represented as two independent atoms, are compared to the data. They give a new insight into the dynamics of the collision by providing, for the di erent electron capture channels, the two-dimensional probability maps p(~b), where ~b is the impact parameter vector in the molecular frame

    Diphoton Production at Hadron Colliders and New Contact Interactions

    Full text link
    We explore the capability of the Tevatron and LHC to place limits on the possible existence of flavor-independent qqˉγγq \bar q \gamma\gamma contact interactions which can lead to an excess of diphoton events with large invariant masses. Assuming no departure from the Standard Model is observed, we show that the Tevatron will eventually be able to place a lower bound of 0.5-0.6 TeV on the scale associated with this new contact interaction. At the LHC, scales as large as 3-6 TeV may be probed with suitable detector cuts and an integrated luminosity of 100fb1100 fb^{-1}.Comment: LaTex, 12pages plus 5 figures(available on request), SLAC-PUB-657

    First Measurement of Pure Electron Shakeoff in the β Decay of Trapped 6He+ Ions

    Get PDF
    Expérience GANIL/SPIRAL/LIRATThe electron shakeoff probability of 6Li2+ ions resulting from the β- decay of 6He+ ions has been measured with high precision using a specially designed recoil ion spectrometer. This is the first measurement of a pure electron shakeoff following nuclear β decay, not affected by multielectron processes such as Auger cascades. In this ideal textbook case for the application of the sudden approximation, the experimental ionization probability was found to be Psoexp=0.023 39(36) in perfect agreement with simple quantum mechanical calculations

    Primary processes: from atoms to diatomic molecules and clusters

    Get PDF
    International audienceThis article presents a short review of the main progresses achieved at the GANIL facilities during the last thirty years in the field of ion-atom and ion-diatomic molecule collisions. Thanks to the wide range of projectile energies and species available on the different beam lines of the facility, elementary processes such as electron capture, ionization and excitation have been extensively studied. Beside primary collision mechanisms, the relaxation processes of the collision partners after the collision have been another specific source of interest. Progresses on other fundamental processes such as Young type interferences induced by ion-molecule collisions or shake off ionization resulting from nuclear beta decay are also presented. 1. Introduction For the electronic structures of atoms and molecules, precise theoretical knowledge and high-resolution experimental data are available. But the complete understanding of dynamic processes in atomic collisions remains a challenge, due to large theoretical problems in describing time-dependent many-particle reactions, and to experimental difficulties in performing complete experiments in which all relevant quantities are accessible. Elementary collisions involving ions, atoms and molecules play an important role in many gaseous and plasma environments, where they provide both the heating and cooling mechanisms. The study of such collisions is thus not only of fundamental importance, it is also essential for the understanding of large-scale systems such as astrophysical plasmas, planetary atmospheres, gas discharge lasers, semiconductor processing plasmas, and fusion plasmas. Collisions between ions and atoms (or simple molecules) give also access to the elementary processes responsible for energy transfer in ion-matter and ion-biological molecule collisions. Complete knowledge of these elementary processes is thus of primordial importance for ion induced modification of materials as well as for radiolysis, radiotherapy and biological damages due to radiation exposure

    Electron shakeoff following the β+ decay of trapped 35Ar+ ions

    Get PDF
    The electron shakeoff of 35Cl atoms resulting from the β+ decay of 35Ar+ ions has been investigated using a Paul trap coupled to a recoil-ion spectrometer. The charge-state distribution of the recoiling daughter nuclei is compared to theoretical calculations accounting for shakeoff and Auger processes. The calculations are in excellent agreement with the experimental results and enable one to identify the ionization reaction routes leading to the formation of all charge states.D.R. acknowledges support from the Spanish ministry of Economy and Competitiveness under the project FPA2010-14803 and the action AIC10-D000562

    Uses and Abuses of Effective Lagrangians

    Full text link
    Motivated by past and recent analyses we critically re-examine the use of effective lagrangians in the literature to constrain new physics and to determine the `physics reach' of future experiments. We demonstrate that many calculations, such as those involving anomalous trilinear gauge-boson couplings, either considerably overestimate loop-induced effects, or give ambiguous answers. The source of these problems is the use of cutoffs to evaluate the size of such operators in loop diagrams. In contrast to other critics of these loop estimates, we prove that the inclusion of nonlinearly-realized gauge invariance into the low-energy lagrangian is irrelevant to this conclusion. We use an explicit example using known multi-Higgs physics above the weak scale to underline these points. We show how to draw conclusions regarding the nature of the unknown high-energy physics without making reference to low-energy cutoffs.Comment: 36 page

    Evaluation of formal IDEs for human-machine interface design and analysis: the case of CIRCUS and PVSio-web

    Get PDF
    Critical human-machine interfaces are present in many systems including avionics systems and medical devices. Use error is a concern in these systems both in terms of hardware panels and input devices, and the software that drives the interfaces. Guaranteeing safe usability, in terms of buttons, knobs and displays is now a key element in the overall safety of the system. New integrated development environments (IDEs) based on formal methods technologies have been developed by the research community to support the design and analysis of high-confidence human-machine interfaces. To date, little work has focused on the comparison of these particular types of formal IDEs. This paper compares and evaluates two state-of-the-art toolkits: CIRCUS, a model-based development and analysis tool based on Petri net extensions, and PVSio-web, a prototyping toolkit based on the PVS theorem proving system.This work is partially supported by: Project NORTE-01-0145-FEDER-000016, financed by the North Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and through the European Regional Development Fund (ERDF); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) PhD scholarship

    On Non-Standard Couplings among the Electroweak Vector Bosons

    Get PDF
    Application of a Stueckelberg transformation allows one to connect various Lagrangians which have been independently proposed for non-standard couplings. We discuss the reduction of the number of independent parameters in the Lagrangian and compare symmetry arguments with dimensional arguments.Comment: 11 pages LaTeX 2.0
    corecore