9 research outputs found

    TRAIL-R4 Promotes Tumor Growth and Resistance to Apoptosis in Cervical Carcinoma HeLa Cells through AKT

    Get PDF
    International audienceBACKGROUND: TRAIL/Apo2L is a pro-apoptotic ligand of the TNF family that engages the apoptotic machinery through two pro-apoptotic receptors, TRAIL-R1 and TRAIL-R2. This cell death program is tightly controlled by two antagonistic receptors, TRAIL-R3 and TRAIL-R4, both devoid of a functional death domain, an intracellular region of the receptor, required for the recruitment and the activation of initiator caspases. Upon TRAIL-binding, TRAIL-R4 forms a heteromeric complex with the agonistic receptor TRAIL-R2 leading to reduced caspase-8 activation and apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: We provide evidence that TRAIL-R4 can also exhibit, in a ligand independent manner, signaling properties in the cervical carcinoma cell line HeLa, through Akt. Ectopic expression of TRAIL-R4 in HeLa cells induced morphological changes, with cell rounding, loss of adherence and markedly enhanced cell proliferation in vitro and tumor growth in vivo. Disruption of the PI3K/Akt pathway using the pharmacological inhibitor LY294002, siRNA targeting the p85 regulatory subunit of phosphatidylinositol-3 kinase, or by PTEN over-expression, partially restored TRAIL-mediated apoptosis in these cells. Moreover, the Akt inhibitor, LY294002, restituted normal cell proliferation index in HeLa cells expressing TRAIL-R4. CONCLUSIONS/SIGNIFICANCE: Altogether, these results indicate that, besides its ability to directly inhibit TRAIL-induced cell death at the membrane, TRAIL-R4 can also trigger the activation of signaling pathways leading to cell survival and proliferation in HeLa cells. Our findings raise the possibility that TRAIL-R4 may contribute to cervical carcinogenesis

    Controlling TRAIL-mediated caspase-3 activation.

    No full text
    International audienceComment on: * Leukemia. 2004 Oct;18(10):1671-8

    Arsenic trioxide induces apoptosis of human monocytes during macrophagic differentiation through nuclear factor-kappaB-related survival pathway down-regulation.

    No full text
    International audienceArsenic trioxide (As(2)O(3)) is known to be toxic toward leukemia cells. In this study, we determined its effects on survival of human monocytic cells during macrophagic differentiation, an important biological process involved in the immune response. As(2)O(3) used at clinically relevant pharmacological concentrations induced marked apoptosis of human blood monocytes during differentiation with either granulocyte-macrophage colony-stimulating factor or macrophage colony-stimulating factor. Apoptosis of monocytes was associated with increased caspase activities and decreased DNA binding of p65 nuclear factor-kappaB (NF-kappaB); like As(2)O(3), the selective NF-kappaB inhibitor (E)-3-[(4-methylphenyl)-sulfonyl]-2-propenenitrile (Bay 11-7082) strongly reduced survival of differentiating monocytes. The role of NF-kappaB in arsenic toxicity was also studied in promonocytic U937 cells during phorbol 12-myristate 13-acetate-induced macrophagic differentiation. In these cells, As(2)O(3) first reduced DNA binding of p65 NF-kappaB and subsequently induced apoptosis. In addition, overexpression of the p65 NF-kappaB subunit, following stable infection with a p65 retroviral expressing vector, increased survival of As(2)O(3)-treated U937 cells. As(2)O(3) specifically decreased protein levels of X-linked inhibitor of apoptosis protein and FLICE-inhibitory protein, two NF-kappaB-regulated genes in both U937 cells and blood monocytes during their differentiations. Finally, As(2)O(3) was found to inhibit macrophagic differentiation of monocytic cells when used at cytotoxic concentrations; however, overexpression of the p65 NF-kappaB subunit in U937 cells reduced its effects toward differentiation. In contrast to monocytes, well differentiated macrophages were resistant to low concentrations of As(2)O(3). Altogether, our study demonstrates that clinically relevant concentrations of As(2)O(3) induced marked apoptosis of monocytic cells during in vitro macrophagic differentiation likely through inhibition of NF-kappaB-related survival pathways

    Differential inhibition of TRAIL-mediated DR5-DISC formation by decoy receptors 1 and 2.

    Get PDF
    International audienceTumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family that induces cancer cell death by apoptosis with some selectivity. TRAIL-induced apoptosis is mediated by the transmembrane receptors death receptor 4 (DR4) (also known as TRAIL-R1) and DR5 (TRAIL-R2). TRAIL can also bind decoy receptor 1 (DcR1) (TRAIL-R3) and DcR2 (TRAIL-R4) that fail to induce apoptosis since they lack and have a truncated cytoplasmic death domain, respectively. In addition, DcR1 and DcR2 inhibit DR4- and DR5-mediated, TRAIL-induced apoptosis and we demonstrate here that this occurs through distinct mechanisms. While DcR1 prevents the assembly of the death-inducing signaling complex (DISC) by titrating TRAIL within lipid rafts, DcR2 is corecruited with DR5 within the DISC, where it inhibits initiator caspase activation. In addition, DcR2 prevents DR4 recruitment within the DR5 DISC. The specificity of DcR1- and DcR2-mediated TRAIL inhibition reveals an additional level of complexity for the regulation of TRAIL signaling

    TRAIL in cancer therapy: present and future challenges.

    No full text
    International audienceSince its identification in 1995, TNF-related apoptosis-inducing ligand (TRAIL) has sparked growing interest in oncology due to its reported ability to selectively trigger cancer cell death. In contrast to other members of the TNF superfamily, TRAIL administration in vivo is safe. The relative absence of toxic side effects of this naturally occurring cytokine, in addition to its antitumoural properties, has led to its preclinical evaluation. However, despite intensive investigations, little is known in regards to the mechanisms underlying TRAIL selectivity or efficiency. An appropriate understanding of its physiological relevance, and of the mechanisms controlling cancer cells escape from TRAIL-induced cell death, will be required to optimally use the cytokine in clinics. The present review focuses on recent advances in the understanding of TRAIL signal transduction and discusses the existing and future challenges of TRAIL-based cancer therapy development
    corecore