16 research outputs found

    Tissue-Specific Biomarker Responses in the Blue Mussel Mytilus spp. Exposed to a Mixture of Microplastics at Environmentally Relevant Concentrations

    Get PDF
    The impact of a microplastic (MP) mixture composed of polyethylene (PE) and polypropylene (PP) plastic particles, prepared from commercially available products, was evaluated in blue mussels Mytilus spp. exposed to three environmentally relevant concentrations: 0.008 ÎŒg L−1 (low), 10 ÎŒg L−1 (medium), and 100 ÎŒg L−1 (high). Organisms were exposed for 10 days followed by 10 days of depuration in clean seawater under controlled laboratory conditions. The evaluation of MP effects on mussel clearance rate, tissue structure, antioxidant defenses, immune and digestive parameters, and DNA integrity were investigated while the identification of plastic particles in mussel tissues (gills, digestive gland, and remaining tissues), and biodeposits (feces and pseudofaeces) was performed using infrared microscopy (ÎŒFT-IR). Results showed the presence of MPs only in the digestive gland of mussels exposed to the highest tested concentration of MPs with a mean of 0.75 particle/mussel (after the 10 days of exposure). In biodeposits, PE and PP particles were detected following exposure to all tested concentrations confirming the ingestion of MPs by the organisms. A differential response of antioxidant enzyme activities between digestive gland and gills was observed. Significant increases in superoxide dismutase (SOD) and catalase (CAT) activities were measured in the digestive gland of mussels exposed to the low (0.008 ÎŒg L−1) and medium (10 ÎŒg L−1) concentrations of MPs and in the gills from mussels exposed to the highest concentration (100 ÎŒg L−1) of MPs that could be indicative of a change in the redox balance. Moreover, an increase in acid phosphatase activity was measured in hemolymph of mussels exposed to 0.008 and 10 ÎŒg L−1 concentrations. No significant difference was observed in the clearance rate, and histopathological parameters between control and exposed mussels. This study brings new insights on the potential sublethal impacts of MPs at environmentally relevant concentrations in marine bivalves

    Ecology and evolution of the Plasmopara viticola / Vitis spp. interaction and risk assessment for grapevine downy mildew resistance breakdown

    No full text
    La comprĂ©hension du processus d’adaptation des populations de parasites Ă  leur plante-hĂŽte est une question fondamentale en Ă©cologie Ă©volutive. C’est Ă©galement un enjeu majeur de recherche finalisĂ©e qui a des retombĂ©es pour la protection des cultures. L’oomycĂšte Plasmopara viticola, agent causal du mildiou de la vigne, attaque les espĂšces du genre Vitis. Dans un contexte oĂč l’enjeu principal des programmes d’amĂ©lioration est la durabilitĂ© des rĂ©sistances, des connaissances nouvelles sur l’écologie et l’évolution de l'interaction entre le parasite et son hĂŽte sont nĂ©cessaires afin d’évaluer le potentiel du mildiou Ă  surmonter ces rĂ©sistances. Dans ma thĂšse, je me suis intĂ©ressĂ©e au rĂŽle de la plante-hĂŽte comme facteur d’évolution des populations de mildiou, en posant cette question Ă  diffĂ©rentes Ă©chelles Ă©volutives : (i) dans le bassin d’origine du pathogĂšne (AmĂ©rique du Nord), j’ai cherchĂ© Ă  Ă©valuer le degrĂ© de spĂ©cialisation du parasite sur sa gamme d’hĂŽtes sauvages et cultivĂ©s; (ii) en Europe, oĂč le mildiou de la vigne a Ă©tĂ© introduit rĂ©cemment, j’ai Ă©tudiĂ© l’évolution des populations de mildiou soumis Ă  la pression de sĂ©lection des rĂ©sistances des nouvelles variĂ©tĂ©s de vigne. Pour comprendre la spĂ©cialisation plante-hĂŽte dans ce pathosystĂšme oĂč plusieurs espĂšces cryptiques ont Ă©tĂ© identifiĂ©es, nous avons rĂ©alisĂ© des tests d’inoculations croisĂ©es entre espĂšces hĂŽtes (Vitis spp.) et agent pathogĂšne (P. viticola). Les donnĂ©es phĂ©notypiques et morphologiques apportent les preuves d’une spĂ©cialisation plante-hĂŽte au sein des populations de P. viticola : les espĂšces A et D de mildiou sont spĂ©cialisĂ©es sur leur plante-hĂŽte, tandis que le processus de spĂ©cialisation est en cours pour les espĂšces B et C. MĂȘme si aucune diffĂ©renciation gĂ©nĂ©tique n’a Ă©tĂ© montrĂ©e au sein de l’espĂšce C, il existe deux groupes distincts au sein de l’espĂšce B. Les isolats du compartiment cultivĂ© sont en moyenne plus agressifs que les isolats issus des vignes sauvages, indiquant une adaptation des isolats cultivĂ©s sur leur plante hĂŽte. A partir d’un large Ă©chantillonnage, nous avons Ă©tudiĂ© la distribution des espĂšces de mildiou sur leurs plantes-hĂŽtes sauvages et cultivĂ©es. Ce travail a permis d’identifier une nouvelle espĂšce cryptique et a confirmĂ© la spĂ©cialisation plante-hĂŽte. En Europe, nos rĂ©sultats montrent que le dĂ©ploiement limitĂ© de variĂ©tĂ©s Ă  rĂ©sistantes partielles a conduit Ă  des modifications des populations de mildiou: apparition d’isolats virulents (i.e. contournant un QTL majeur de rĂ©sistance), et augmentation de l’agressivitĂ© sur Vitis vinifera. Dans le but de comprendre les mĂ©canismes Ă  l’origine de la spĂ©cialisation et du contournement des rĂ©sistances, nous nous sommes intĂ©ressĂ©s au rĂ©pertoire d’effecteurs du parasite. Une centaine d’effecteurs candidats ont Ă©tĂ© identifiĂ©s en utilisant les donnĂ©es disponibles sur le gĂ©nome de P. viticola. L’analyse du polymorphisme de 32 candidats sur une sĂ©lection d’isolats montre que trois d’entre eux Ă©voluent sous sĂ©lection positive. Ces rĂ©sultats soulignent l’importance de la plante-hĂŽte comme facteur de diversification des populations de l’agent pathogĂšne et rĂ©vĂšlent que le mildiou s’adapte rapidement aux rĂ©sistances de la vigne. Il est dĂ©sormais nĂ©cessaire de mieux apprĂ©hender le dĂ©ploiement des rĂ©sistances de la vigne afin qu’elles puissent ĂȘtre durables.Understanding the process of adaptation of parasite populations to their host-plant is a key issue in evolutionary ecology. It is also a major subject in applied research that has implications for crop protection. The oomycete Plasmopara viticola, the causal agent of downy mildew, attacks the species of the Vitis genus. In a context where the main concern of the breeding programs is the durability of resistance, new knowledge about the ecology and evolution of the interaction between parasite and host is needed in order to evaluate the potential of downy mildew to overcome the resistance. In my thesis, I addressed the role of the host-plant as an evolutionary factor for downy mildew populations, by asking this question at two different evolutionary scales: (i) in the pathogen region of origin (North America) I assessed the degree of specialization of the parasite on its wild and cultivated host range (ii) in Europe, where downy mildew has been introduced recently, I studied the evolution of downy mildew populations subject to the selection pressure imposed by resistant grapevine varieties. To understand the host-plant specialization in this pathosystem, where several cryptic species have been identified, we performed cross inoculations between different host (Vitis spp.) and pathogen (P. viticola) species. Morphological and phenotypic data provide evidence of host-plant specialization in P. viticola populations: downy mildew species A and D are specialized on their host-plant, while the specialization process is ongoing for species B and C. Although no genetic differentiation has been shown inside species C, there are two distinct groups within species B. Isolates from the cultivated compartment are on average more aggressive than isolates from wild vines, indicating an adaptation of isolates growing on cultivated host-plants. Finally, a large-scale study of the distribution of downy mildew species on both their wild and cultivated host-plants resulted in the identification of a new cryptic species and confirmed the host-plant specialization. In Europe, our results show that the limited deployment of resistant varieties has led to changes in downy mildew populations: emergence of virulent isolates (i.e. breakdown of a major QTL for resistance), and increased aggressiveness on Vitis vinifera. In order to understand the mechanisms at the origin of specialization and resistance breakdown, we examined the parasite’s effector repertoire. Over one hundred effector candidates were identified using available data on the P. viticola genome. The polymorphism of 32 candidate genes revealed that three of them evolve under positive selection. Our results reveal the strong ability of downy mildew to adapt to its host plant and to plant resistance. They should be taken into account when devising strategies for the deployment of grapevine resistances in order to guarantee their durability

    Ecology and evolution of the Plasmopara viticola / Vitis spp. interaction and risk assessment for grapevine downy mildew resistance breakdown

    No full text
    La comprĂ©hension du processus d’adaptation des populations de parasites Ă  leur plante-hĂŽte est une question fondamentale en Ă©cologie Ă©volutive. C’est Ă©galement un enjeu majeur de recherche finalisĂ©e qui a des retombĂ©es pour la protection des cultures. L’oomycĂšte Plasmopara viticola, agent causal du mildiou de la vigne, attaque les espĂšces du genre Vitis. Dans un contexte oĂč l’enjeu principal des programmes d’amĂ©lioration est la durabilitĂ© des rĂ©sistances, des connaissances nouvelles sur l’écologie et l’évolution de l'interaction entre le parasite et son hĂŽte sont nĂ©cessaires afin d’évaluer le potentiel du mildiou Ă  surmonter ces rĂ©sistances. Dans ma thĂšse, je me suis intĂ©ressĂ©e au rĂŽle de la plante-hĂŽte comme facteur d’évolution des populations de mildiou, en posant cette question Ă  diffĂ©rentes Ă©chelles Ă©volutives : (i) dans le bassin d’origine du pathogĂšne (AmĂ©rique du Nord), j’ai cherchĂ© Ă  Ă©valuer le degrĂ© de spĂ©cialisation du parasite sur sa gamme d’hĂŽtes sauvages et cultivĂ©s; (ii) en Europe, oĂč le mildiou de la vigne a Ă©tĂ© introduit rĂ©cemment, j’ai Ă©tudiĂ© l’évolution des populations de mildiou soumis Ă  la pression de sĂ©lection des rĂ©sistances des nouvelles variĂ©tĂ©s de vigne. Pour comprendre la spĂ©cialisation plante-hĂŽte dans ce pathosystĂšme oĂč plusieurs espĂšces cryptiques ont Ă©tĂ© identifiĂ©es, nous avons rĂ©alisĂ© des tests d’inoculations croisĂ©es entre espĂšces hĂŽtes (Vitis spp.) et agent pathogĂšne (P. viticola). Les donnĂ©es phĂ©notypiques et morphologiques apportent les preuves d’une spĂ©cialisation plante-hĂŽte au sein des populations de P. viticola : les espĂšces A et D de mildiou sont spĂ©cialisĂ©es sur leur plante-hĂŽte, tandis que le processus de spĂ©cialisation est en cours pour les espĂšces B et C. MĂȘme si aucune diffĂ©renciation gĂ©nĂ©tique n’a Ă©tĂ© montrĂ©e au sein de l’espĂšce C, il existe deux groupes distincts au sein de l’espĂšce B. Les isolats du compartiment cultivĂ© sont en moyenne plus agressifs que les isolats issus des vignes sauvages, indiquant une adaptation des isolats cultivĂ©s sur leur plante hĂŽte. A partir d’un large Ă©chantillonnage, nous avons Ă©tudiĂ© la distribution des espĂšces de mildiou sur leurs plantes-hĂŽtes sauvages et cultivĂ©es. Ce travail a permis d’identifier une nouvelle espĂšce cryptique et a confirmĂ© la spĂ©cialisation plante-hĂŽte. En Europe, nos rĂ©sultats montrent que le dĂ©ploiement limitĂ© de variĂ©tĂ©s Ă  rĂ©sistantes partielles a conduit Ă  des modifications des populations de mildiou: apparition d’isolats virulents (i.e. contournant un QTL majeur de rĂ©sistance), et augmentation de l’agressivitĂ© sur Vitis vinifera. Dans le but de comprendre les mĂ©canismes Ă  l’origine de la spĂ©cialisation et du contournement des rĂ©sistances, nous nous sommes intĂ©ressĂ©s au rĂ©pertoire d’effecteurs du parasite. Une centaine d’effecteurs candidats ont Ă©tĂ© identifiĂ©s en utilisant les donnĂ©es disponibles sur le gĂ©nome de P. viticola. L’analyse du polymorphisme de 32 candidats sur une sĂ©lection d’isolats montre que trois d’entre eux Ă©voluent sous sĂ©lection positive. Ces rĂ©sultats soulignent l’importance de la plante-hĂŽte comme facteur de diversification des populations de l’agent pathogĂšne et rĂ©vĂšlent que le mildiou s’adapte rapidement aux rĂ©sistances de la vigne. Il est dĂ©sormais nĂ©cessaire de mieux apprĂ©hender le dĂ©ploiement des rĂ©sistances de la vigne afin qu’elles puissent ĂȘtre durables.Understanding the process of adaptation of parasite populations to their host-plant is a key issue in evolutionary ecology. It is also a major subject in applied research that has implications for crop protection. The oomycete Plasmopara viticola, the causal agent of downy mildew, attacks the species of the Vitis genus. In a context where the main concern of the breeding programs is the durability of resistance, new knowledge about the ecology and evolution of the interaction between parasite and host is needed in order to evaluate the potential of downy mildew to overcome the resistance. In my thesis, I addressed the role of the host-plant as an evolutionary factor for downy mildew populations, by asking this question at two different evolutionary scales: (i) in the pathogen region of origin (North America) I assessed the degree of specialization of the parasite on its wild and cultivated host range (ii) in Europe, where downy mildew has been introduced recently, I studied the evolution of downy mildew populations subject to the selection pressure imposed by resistant grapevine varieties. To understand the host-plant specialization in this pathosystem, where several cryptic species have been identified, we performed cross inoculations between different host (Vitis spp.) and pathogen (P. viticola) species. Morphological and phenotypic data provide evidence of host-plant specialization in P. viticola populations: downy mildew species A and D are specialized on their host-plant, while the specialization process is ongoing for species B and C. Although no genetic differentiation has been shown inside species C, there are two distinct groups within species B. Isolates from the cultivated compartment are on average more aggressive than isolates from wild vines, indicating an adaptation of isolates growing on cultivated host-plants. Finally, a large-scale study of the distribution of downy mildew species on both their wild and cultivated host-plants resulted in the identification of a new cryptic species and confirmed the host-plant specialization. In Europe, our results show that the limited deployment of resistant varieties has led to changes in downy mildew populations: emergence of virulent isolates (i.e. breakdown of a major QTL for resistance), and increased aggressiveness on Vitis vinifera. In order to understand the mechanisms at the origin of specialization and resistance breakdown, we examined the parasite’s effector repertoire. Over one hundred effector candidates were identified using available data on the P. viticola genome. The polymorphism of 32 candidate genes revealed that three of them evolve under positive selection. Our results reveal the strong ability of downy mildew to adapt to its host plant and to plant resistance. They should be taken into account when devising strategies for the deployment of grapevine resistances in order to guarantee their durability

    Écologie et Ă©volution de l’interaction Plasmopara viticola / Vitis spp. et Ă©valuation des risques de contournement de la rĂ©sistance de la vigne au mildiou

    No full text
    Understanding the process of adaptation of parasite populations to their host-plant is a key issue in evolutionary ecology. It is also a major subject in applied research that has implications for crop protection. The oomycete Plasmopara viticola, the causal agent of downy mildew, attacks the species of the Vitis genus. In a context where the main concern of the breeding programs is the durability of resistance, new knowledge about the ecology and evolution of the interaction between parasite and host is needed in order to evaluate the potential of downy mildew to overcome the resistance. In my thesis, I addressed the role of the host-plant as an evolutionary factor for downy mildew populations, by asking this question at two different evolutionary scales: (i) in the pathogen region of origin (North America) I assessed the degree of specialization of the parasite on its wild and cultivated host range (ii) in Europe, where downy mildew has been introduced recently, I studied the evolution of downy mildew populations subject to the selection pressure imposed by resistant grapevine varieties. To understand the host-plant specialization in this pathosystem, where several cryptic species have been identified, we performed cross inoculations between different host (Vitis spp.) and pathogen (P. viticola) species. Morphological and phenotypic data provide evidence of host-plant specialization in P. viticola populations: downy mildew species A and D are specialized on their host-plant, while the specialization process is ongoing for species B and C. Although no genetic differentiation has been shown inside species C, there are two distinct groups within species B. Isolates from the cultivated compartment are on average more aggressive than isolates from wild vines, indicating an adaptation of isolates growing on cultivated host-plants. Finally, a large-scale study of the distribution of downy mildew species on both their wild and cultivated host-plants resulted in the identification of a new cryptic species and confirmed the host-plant specialization. In Europe, our results show that the limited deployment of resistant varieties has led to changes in downy mildew populations: emergence of virulent isolates (i.e. breakdown of a major QTL for resistance), and increased aggressiveness on Vitis vinifera. In order to understand the mechanisms at the origin of specialization and resistance breakdown, we examined the parasite’s effector repertoire. Over one hundred effector candidates were identified using available data on the P. viticola genome. The polymorphism of 32 candidate genes revealed that three of them evolve under positive selection. Our results reveal the strong ability of downy mildew to adapt to its host plant and to plant resistance. They should be taken into account when devising strategies for the deployment of grapevine resistances in order to guarantee their durability.La comprĂ©hension du processus d’adaptation des populations de parasites Ă  leur plante-hĂŽte est une question fondamentale en Ă©cologie Ă©volutive. C’est Ă©galement un enjeu majeur de recherche finalisĂ©e qui a des retombĂ©es pour la protection des cultures. L’oomycĂšte Plasmopara viticola, agent causal du mildiou de la vigne, attaque les espĂšces du genre Vitis. Dans un contexte oĂč l’enjeu principal des programmes d’amĂ©lioration est la durabilitĂ© des rĂ©sistances, des connaissances nouvelles sur l’écologie et l’évolution de l'interaction entre le parasite et son hĂŽte sont nĂ©cessaires afin d’évaluer le potentiel du mildiou Ă  surmonter ces rĂ©sistances. Dans ma thĂšse, je me suis intĂ©ressĂ©e au rĂŽle de la plante-hĂŽte comme facteur d’évolution des populations de mildiou, en posant cette question Ă  diffĂ©rentes Ă©chelles Ă©volutives : (i) dans le bassin d’origine du pathogĂšne (AmĂ©rique du Nord), j’ai cherchĂ© Ă  Ă©valuer le degrĂ© de spĂ©cialisation du parasite sur sa gamme d’hĂŽtes sauvages et cultivĂ©s; (ii) en Europe, oĂč le mildiou de la vigne a Ă©tĂ© introduit rĂ©cemment, j’ai Ă©tudiĂ© l’évolution des populations de mildiou soumis Ă  la pression de sĂ©lection des rĂ©sistances des nouvelles variĂ©tĂ©s de vigne. Pour comprendre la spĂ©cialisation plante-hĂŽte dans ce pathosystĂšme oĂč plusieurs espĂšces cryptiques ont Ă©tĂ© identifiĂ©es, nous avons rĂ©alisĂ© des tests d’inoculations croisĂ©es entre espĂšces hĂŽtes (Vitis spp.) et agent pathogĂšne (P. viticola). Les donnĂ©es phĂ©notypiques et morphologiques apportent les preuves d’une spĂ©cialisation plante-hĂŽte au sein des populations de P. viticola : les espĂšces A et D de mildiou sont spĂ©cialisĂ©es sur leur plante-hĂŽte, tandis que le processus de spĂ©cialisation est en cours pour les espĂšces B et C. MĂȘme si aucune diffĂ©renciation gĂ©nĂ©tique n’a Ă©tĂ© montrĂ©e au sein de l’espĂšce C, il existe deux groupes distincts au sein de l’espĂšce B. Les isolats du compartiment cultivĂ© sont en moyenne plus agressifs que les isolats issus des vignes sauvages, indiquant une adaptation des isolats cultivĂ©s sur leur plante hĂŽte. A partir d’un large Ă©chantillonnage, nous avons Ă©tudiĂ© la distribution des espĂšces de mildiou sur leurs plantes-hĂŽtes sauvages et cultivĂ©es. Ce travail a permis d’identifier une nouvelle espĂšce cryptique et a confirmĂ© la spĂ©cialisation plante-hĂŽte. En Europe, nos rĂ©sultats montrent que le dĂ©ploiement limitĂ© de variĂ©tĂ©s Ă  rĂ©sistantes partielles a conduit Ă  des modifications des populations de mildiou: apparition d’isolats virulents (i.e. contournant un QTL majeur de rĂ©sistance), et augmentation de l’agressivitĂ© sur Vitis vinifera. Dans le but de comprendre les mĂ©canismes Ă  l’origine de la spĂ©cialisation et du contournement des rĂ©sistances, nous nous sommes intĂ©ressĂ©s au rĂ©pertoire d’effecteurs du parasite. Une centaine d’effecteurs candidats ont Ă©tĂ© identifiĂ©s en utilisant les donnĂ©es disponibles sur le gĂ©nome de P. viticola. L’analyse du polymorphisme de 32 candidats sur une sĂ©lection d’isolats montre que trois d’entre eux Ă©voluent sous sĂ©lection positive. Ces rĂ©sultats soulignent l’importance de la plante-hĂŽte comme facteur de diversification des populations de l’agent pathogĂšne et rĂ©vĂšlent que le mildiou s’adapte rapidement aux rĂ©sistances de la vigne. Il est dĂ©sormais nĂ©cessaire de mieux apprĂ©hender le dĂ©ploiement des rĂ©sistances de la vigne afin qu’elles puissent ĂȘtre durables

    Phylogenetic and experimental evidence for host-specialized cryptic species in a biotrophic oomycete

    No full text
    International audienceAssortative mating resulting from host plant specialization has been proposed to facilitate rapid ecological divergence in biotrophic plant pathogens. Downy mildews, a major group of biotrophic oomycetes, are prime candidates for testing speciation by host plant specialization. Here, we combined a phylogenetic and morphological approach with cross-pathogenicity tests to investigate host plant specialization and host range expansion in grapevine downy mildew. This destructive disease is caused by Plasmopara viticola, an oomycete endemic to North America on wild species and cultivated grapevines. Multiple genealogies and sporangia morphology provide evidence that P. viticola is a complex of four cryptic species, each associated with different host plants. Cross-inoculation experiments showed complete host plant specialization on Parthenocissus quinquefolia and on Vitis riparia, whereas cryptic species found on V. aestivalis, V. labrusca and V. vinifera were revealed to be less specific. We reconstructed the recent host range expansion of P. viticola from wild to cultivated grapevines, and showed that it was accompanied by an increase in aggressiveness of the pathogen. This case study on grapevine downy mildew illustrates how biotrophic plant pathogens can diversify by host plant specialization and emerge in agrosystems by shifting to cultivated hosts. These results might have important implications for viticulture, including breeding for resistance and disease management

    Does ultrafiltration kinetics bias iron isotope compositions?

    No full text
    International audienceIron (Fe) isotopes are now recognized as useful tracers of Fe sources and biogeochemical processes in natural environments but many uncertainties remain regarding the mechanisms that control their isotopic fractionation. Ultrafiltration techniques applied to separate Fe species could potentially bias Fe isotopic compositions. Here, we investigated frontal centrifugal ultrafiltration. We have set up time-ultrafiltration experiments at low and high Fe concentrations both with and without organic matter (OM) at pH values of 1 and 6.5. The ultrafiltration impact was studied by monitoring the Fe isotope composition in the <30 kDa ultrafiltrates relative to the ultrafiltration time. No Fe isotopes bias resulted from the ultrafiltration technique regardless the Fe and OM concentrations and speciation. This work, therefore, validates the use of the frontal centrifugal ultrafiltration technique to study the signature of Fe isotopes in environmental samples composed of various Fe species sizes such as colloids, nanoparticles, clusters or soluble complexes

    Neuroanatomical correlates of penile erection evoked by photographic stimuli in human males

    No full text
    The objective of this study was to identify the cerebral correlates of the early phase, and of low to moderate levels, of penile tumescence using for the first time a volumetric measure of the penile response. We hypothesized that (i) regions whose response had been found correlated with circumferential penile responses in previous studies would be identified with volumetric plethysmography and (ii) that other brain regions, including the amygdalae, would be found using the more sensitive volumetric measurement. In ten healthy males, functional magnetic resonance imaging (fMRI) was used to study brain responses to sexually stimulating photographs and to various categories of control photographs. Both ratings of perceived erection and penile plethysmography demonstrated an erectile response to the presentation of sexually stimulating photographs. Regions where the BOLD signal was correlated with penile volumetric responses included the right medial prefrontal cortex, the right and left orbitofrontal cortices, the insulae, the paracentral lobules, the right ventral lateral thalamic nucleus, the right anterior cingulate cortex and regions involved in motor imagery and motor preparation (supplementary motor areas, left ventral premotor area). This study suggests that the development of low levels of penile tumescence in response to static sexual stimuli is controlled by a network of frontal, parietal, insular and cingulate cortical areas and that penile tumescence reciprocally induces activation in somatosensory regions of the brain

    More than redox, biological organic ligands control iron isotope fractionation in the riparian wetland

    No full text
    Although redox reactions are recognized to fractionate iron (Fe) isotopes, the dominant mechanisms controlling the Fe isotope fractionation and notably the role of organic matter (OM) are still debated. Here, we demonstrate how binding to organic ligands governs Fe isotope fractionation beyond that arising from redox reactions. The reductive biodissolution of soil Fe(III) enriched the solution in light Fe isotopes, whereas, with the extended reduction, the preferential binding of heavy Fe isotopes to large biological organic ligands enriched the solution in heavy Fe isotopes. Under oxic conditions, the aggregation/sedimentation of Fe(III) nano-oxides with OM resulted in an initial enrichment of the solution in light Fe isotopes. However, heavy Fe isotopes progressively dominate the solution composition in response to their binding with large biologically-derived organic ligands. Confronted with field data, these results demonstrate that Fe isotope systematics in wetlands are controlled by the OM flux, masking Fe isotope fractionation arising from redox reactions. This work sheds light on an overseen aspect of Fe isotopic fractionation and calls for a reevaluation of the parameters controlling the Fe isotopes fractionation to clarify the interpretation of the Fe isotopic signature

    Iron isotope fractionation in iron-organic matter associations: Experimental evidence using filtration and ultrafiltration

    No full text
    Colloids have been recognized as key vectors of pollutants in aqueous environment. Amongst them, those formed by iron (Fe) and organic matter (OM) are of major importance due to their ubiquity in the surface environment and strong affinity for metals. In the recent years, Fe stable isotopes have been increasingly used to elucidate the sources and biogeochemical cycling of Fe in Earth's surface environments. In this study, we aim to elucidate (i) the possible Fe isotopic signature resulting from the Fe/OM colloid formation and (ii) the mechanisms involved in the development of such isotopic signature. For this purpose, Fe-OM associations were synthesized through binding and titration experiments. Various pH levels were used in order to study the isotope behavior of Fe occurring as free species at pH 1, as Fe-OM complexes at pH 2 and as mixed Fe-oxyhydroxide/OM nanoaggregates or particles at pH 6.5. Organic matter-free, Fe-free and OM membrane-deposition experiments were also performed. These suspensions were (ultra)filtered at 0.2 ”m, 30 kDa and 5 kDa to evidence the possible Fe isotope fractionation between fractions. This protocol allowed also testing the potential of (ultra)filtration techniques to generate isotope fractionation. The results provided evidence that abiotic Fe precipitation, (ultra)filtration techniques and OM deposition were not able to produce significant Fe isotope fractionation under the experimental conditions. However, at circum-neutral pH, the Fe-OM binding and titration experiments displayed a significant enrichment of heavy Fe isotopes in the 30 kDa and 30 kDa and 5kDa - <5kDa = -0.23 ± 0.08‰ suggesting that Fe heavy isotopes are preferentially bound to small humic OM molecules in the form of Fe monomers or small clusters. This study highlights the importance of organic matter for metals’ isotopic systems
    corecore