206 research outputs found
Intercultural Blended Design Considerations: A Case Study of a Nordic-Baltic Course in Autism Intervention
Specialized educational programs previously unavailable to many students are now accessible to
students spread throughout the world. In particular, this globalization presents new opportunities
and challenges for universities educating professionals in the field of autism treatment. The aim
of the present case study is to analyse the experiences of students who participated in an
intercultural graduate level blended learning course in applied behaviour analysis with an autism
focus. Students were enrolled in universities in four Nordic-Baltic countries. Country based focus
group interviews and surveys were used to explore student’s experiences and perceptions. Results
indicate that access to expertise and interacting with other cultures were noted to positively affect
learning experience. Risk for cultural divide due to discrepancies in technology, differing
pedagogical traditions, and understanding of English were also reported. Implications regarding
the potential risks and benefits inherent in intercultural blended learning courses are discussed
and suggestions are offered for enhancing the success of such courses
Progressive myoclonus epilepsy KCNC1 variant causes a developmental dendritopathy
OBJECTIVE: Mutations in KCNC1 can cause severe neurological dysfunction, including intellectual disability, epilepsy, and ataxia. The Arg320His variant, which occurs in the voltage-sensing domain of the channel, causes a highly penetrant and specific form of progressive myoclonus epilepsy with severe ataxia, designated myoclonus epilepsy and ataxia due to potassium channel mutation (MEAK). KCNC1 encodes the voltage-gated potassium channel KV 3.1, a channel that is important for enabling high-frequency firing in interneurons, raising the possibility that MEAK is associated with reduced interneuronal function. METHODS: To determine how this variant triggers MEAK, we expressed KV 3.1bR320H in cortical interneurons in vitro and investigated the effects on neuronal function and morphology. We also performed electrophysiological recordings of oocytes expressing KV 3.1b to determine whether the mutation introduces gating pore currents. RESULTS: Expression of the KV 3.1bR320H variant profoundly reduced excitability of mature cortical interneurons, and cells expressing these channels were unable to support high-frequency firing. The mutant channel also had an unexpected effect on morphology, severely impairing neurite development and interneuron viability, an effect that could not be rescued by blocking KV 3 channels. Oocyte recordings confirmed that in the adult KV 3.1b isoform, R320H confers a dominant negative loss-of-function effect by slowing channel activation, but does not introduce potentially toxic gating pore currents. SIGNIFICANCE: Overall, our data suggest that, in addition to the regulation of high-frequency firing, KV 3.1 channels play a hitherto unrecognized role in neuronal development. MEAK may be described as a developmental dendritopathy
Difficulties in administration of oral medication formulations to pet cats: an e-survey of cat owners
The purpose here was to determine the problems cat owners encounter in medicating their cats with orally administered drugs at home. The study was carried out as an open e-questionnaire survey addressed to cat owners in which the authors focused on the oral administration route. A total of 46 completed questionnaires were included in the survey. In the study, 46 cats received 67 orally administered drugs. Approximately half of the drugs were registered for use in cats by the European Medicines Agency (54 per cent), and there were also off-label drugs registered for human (36 per cent) and canine medication (7.4 per cent) and an ex tempore drug (3.0 per cent). The owners were unable to give the doses as prescribed for their cats for one-fourth of the medications (16/67). Drugs that were registered for feline medication were significantly more palatable than drugs registered for other species (odds ratio (OR) 4.9), and liquid formulations were significantly more palatable than solid formulations (OR 4.8). However, most of the owners (22/38) preferred a solid dosage form, while few (4/38) chose a liquid formulation. The results indicate that there is still a need for more palatable and easily administered oral drugs for cats.Peer reviewe
Ageing Contributes to Phenotype Transition in a Mouse Model of Periodic Paralysis
Background:
Periodic paralysis (PP) is a rare genetic disorder in which ion channel mutation causes episodic paralysis in association with hyper- or hypokalaemia. An unexplained but consistent feature of PP is that a phenotype transition occurs around the age of 40, in which the severity of potassium-induced muscle weakness declines but onset of fixed, progressive weakness is reported. This phenotype transition coincides with the age at which muscle mass and optimal motor function start to decline in healthy individuals. We sought to determine if the phenotype transition in PP is linked to the normal ageing phenotype transition and to explore the mechanisms involved.
Methods:
A mouse model of hyperkalaemic PP was compared with wild-type littermates across a range of ages (13–104 weeks). Only male mice were used as penetrance is incomplete in females. We adapted the muscle velocity recovery cycle technique from humans to examine murine muscle excitability in vivo. We then examined changes in potassium-induced weakness or caffeine contracture force with age using ex vivo muscle tension testing. Muscles were further characterized by either Western blot, histology or energy charge measurement. For normally distributed data, a student's t-test (± Welch correction) or one- or two-way analysis of variance (ANOVA) was performed to determine significance. For data that were not normally distributed, Welch rank test, Mann Whitney U test or Kruskal–Wallis ANOVA was performed. When an ANOVA was significant (P < 0.05), post hoc Tukey testing was used.
Results:
Both WT (P = 0.009) and PP (P = 0.007) muscles exhibit increased resistance to potassium-induced weakness with age. Our data suggest that healthy-old muscle develops mechanisms to maintain force despite sarcolemmal depolarization and sodium channel inactivation. In contrast, reduced caffeine contracture force (P = 0.00005), skeletal muscle energy charge (P = 0.004) and structural core pathology (P = 0.005) were specific to Draggen muscle, indicating that they are caused, or at least accelerated by, chronic genetic ion channel dysfunction.
Conclusions:
The phenotype transition with age is replicated in a mouse model of PP. Intrinsic muscle ageing protects against potassium-induced weakness in HyperPP mice. However, it also appears to accelerate impairment of sarcoplasmic reticulum calcium release, mitochondrial impairment and the development of core-like regions, suggesting acquired RyR1 dysfunction as the potential aetiology. This work provides a first description of mechanisms involved in phenotype transition with age in PP. It also demonstrates how studying phenotype transition with age in monogenic disease can yield novel insights into both disease physiology and the ageing process itself
Myotonia in a patient with a mutation in an S4 arginine residue associated with hypokalaemic periodic paralysis and a concomitant synonymous CLCN1 mutation
The sarcolemmal voltage gated sodium channel NaV1.4 conducts the key depolarizing current that drives the upstroke of the skeletal muscle action potential. It contains four voltage-sensing domains (VSDs) that regulate the opening of the pore domain and ensuing permeation of sodium ions. Mutations that lead to increased NaV1.4 currents are found in patients with myotonia or hyperkalaemic periodic paralysis (HyperPP). Myotonia is also caused by mutations in the CLCN1gene that result in loss-of-function of the skeletal muscle chloride channel ClC-1. Mutations affecting arginine residues in the fourth transmembrane helix (S4) of the NaV1.4 VSDs can result in a leak current through the VSD and hypokalemic periodic paralysis (HypoPP), but these have hitherto not been associated with myotonia. We report a patient with an Nav1.4 S4 arginine mutation, R222Q, presenting with severe myotonia without fulminant paralytic episodes. Other mutations affecting the same residue, R222W and R222G, have been found in patients with HypoPP. We show that R222Q channels have enhanced activation, consistent with myotonia, but also conduct a leak current. The patient carries a concomitant synonymous CLCN1 variant that likely worsens the myotonia and potentially contributes to the amelioration of muscle paralysis. Our data show phenotypic variability for different mutations affecting the same S4 arginine that have implications for clinical therapy
Effects of vatinoxan on cardiorespiratory function and gastrointestinal motility during constant-rate medetomidine infusion in standing horses
Background: Medetomidine suppresses cardiovascular function and reduces gastrointestinal motility in horses mainly through peripheral α2‐adrenoceptors. Vatinoxan, a peripheral α2‐antagonist, has been shown experimentally to alleviate the adverse effects of some α2‐agonists in horses. However, vatinoxan has not been investigated during constant‐rate infusion (CRI) of medetomidine in standing horses.Objectives: To evaluate effects of vatinoxan on cardiovascular function, gastrointestinal motility and on sedation level during CRI of medetomidine.Study design: Experimental, randomised, blinded, cross‐over study.Methods: Six healthy horses were given medetomidine hydrochloride, 7 μg/kg i.v., without (MED) and with (MED+V) vatinoxan hydrochloride, 140 μg/kg i.v., followed by CRI of medetomidine at 3.5 μg/kg/h for 60 min. Cardiorespiratory variables were recorded and borborygmi and sedation levels were scored for 120 min. Plasma drug concentrations were measured. The data were analysed using repeated measures ANCOVA and paired t‐tests as appropriate.Results: Initially heart rate (HR) was significantly lower and mean arterial blood pressure (MAP) significantly higher with MED compared with MED+V. For example at 10 min HR (mean ± s.d.) was 26 ± 2 and 31 ± 5 beats/minute (P = 0.04) and MAP 129 ± 15 and 103 ± 13 mmHg (PMain limitations: Experimental study with healthy, unstimulated animals.Conclusions: Vatinoxan administered i.v. with a loading dose of medetomidine improved cardiovascular function and gastrointestinal motility during medetomidine CRI in healthy horses. Sedation was slightly yet significantly reduced during the first 20 min.</p
Choice Architecture Cueing to Healthier Dietary Choices and Physical Activity at the Workplace:Implementation and Feasibility Evaluation
Redesigning choice environments appears a promising approach to encourage healthier eating and physical activity, but little evidence exists of the feasibility of this approach in real-world settings. The aim of this paper is to portray the implementation and feasibility assessment of a 12-month mixed-methods intervention study, StopDia at Work, targeting the environment of 53 diverse worksites. The intervention was conducted within a type 2 diabetes prevention study, StopDia. We assessed feasibility through the fidelity, facilitators and barriers, and maintenance of implementation, building on implementer interviews (n = 61 informants) and observations of the worksites at six (t1) and twelve months (t2). We analysed quantitative data with Kruskall–Wallis and Mann–Whitney U tests and qualitative data with content analysis. Intervention sites altogether implemented 23 various choice architectural strategies (median 3, range 0–14 strategies/site), employing 21 behaviour change mechanisms. Quantitative analysis found implementation was successful in 66%, imperfect in 25%, and failed in 9% of evaluated cases. These ratings were independent of the ease of implementation of applied strategies and reminders that implementers received. Researchers’ assistance in intervention launch (p = 0.02) and direct contact to intervention sites (p < 0.001) predicted higher fidelity at t1, but not at t2. Qualitative content analysis identified facilitators and barriers related to the organisation, intervention, worksite environment, implementer, and user. Contributors of successful implementation included apt implementers, sufficient implementer training, careful planning, integration into worksite values and activities, and management support. After the study, 49% of the worksites intended to maintain the implementation in some form. Overall, the choice architecture approach seems suitable for workplace health promotion, but a range of practicalities warrant consideration while designing real-world implementation
Clinical and genetic spectrum of a Chinese cohort with SCN4A gene mutations
Skeletal muscle sodium channelopathies due to SCN4A gene mutations have a broad clinical spectrum. However, each phenotype has been reported in few cases of Chinese origin. We present detailed phenotype and genotype data from a cohort of 40 cases with SCN4A gene mutations seen in neuromuscular diagnostic service in Huashan hospital, Fudan University. Cases were referred from 6 independent provinces from 2010 to 2018. A questionnaire covering demographics, precipitating factors, episodes of paralysis and myotonia was designed to collect the clinical information. Electrodiagnostic studies and muscle MRI were retrospectively analyzed. The clinical spectrum of patients included: 6 Hyperkalemic periodic paralysis (15%), 18 Hypokalemic periodic paralysis (45%), 7 sodium channel myotonia (17.5%), 4 paramyotonia congenita (10%) and 5 heterozygous asymptomatic mutation carriers (12.5%). Review of clinical information highlights a significant delay to diagnosis (median 15 years), reports of pain and myalgia in the majority of patients, male predominance, circadian rhythm and common precipitating factors. Electrodiagnostic studies revealed subclinical myotonic discharges and a positive long exercise test in asymptomatic carriers. Muscle MRI identified edema and fatty infiltration in gastrocnemius and soleus. A total of 13 reported and 2 novel SCN4A mutations were identified with most variants distributed in the transmembrane helix S4 to S6, with a hotspot mutation p.Arg675Gln accounting for 32.5% (13/40) of the cohort. Our study revealed a higher proportion of periodic paralysis in SCN4A-mutated patients compared with cohorts from England and the Netherlands. It also highlights the importance of electrodiagnostic studies in diagnosis and segregation studies
Genome-Wide Association Study Implicates Atrial Natriuretic Peptide Rather Than B-Type Natriuretic Peptide in the Regulation of Blood Pressure in the General Population
Background Cardiomyocytes secrete atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) in response to mechanical stretching, making them useful clinical biomarkers of cardiac stress. Both human and animal studies indicate a role for ANP as a regulator of blood pressure with conflicting results for BNP. Methods and Results We used genome-wide association analysis (n=6296) to study the effects of genetic variants on circulating natriuretic peptide concentrations and compared the impact of natriuretic peptide-associated genetic variants on blood pressure (n=27059). Eight independent genetic variants in 2 known (NPPA-NPPB and POC1B-GALNT4) and 1 novel locus (PPP3CC) associated with midregional proANP (MR-proANP), BNP, aminoterminal proBNP (NT-proBNP), or BNP:NT-proBNP ratio. The NPPA-NPPB locus containing the adjacent genes encoding ANP and BNP harbored 4 independent cis variants with effects specific to either midregional proANP or BNP and a rare missense single nucleotide polymorphism in NT-proBNP seriously altering its measurement. Variants near the calcineurin catalytic subunit gamma gene PPP3CC and the polypeptide N-acetylgalactosaminyltransferase 4 gene GALNT4 associated with BNP:NT-proBNP ratio but not with BNP or midregional proANP, suggesting effects on the post-translational regulation of proBNP. Out of the 8 individual variants, only those correlated with midregional proANP had a statistically significant albeit weak impact on blood pressure. The combined effect of these 3 single nucleotide polymorphisms also associated with hypertension risk (P=8.2x10(-4)). Conclusions Common genetic differences affecting the circulating concentration of ANP associated with blood pressure, whereas those affecting BNP did not, highlighting the blood pressure-lowering effect of ANP in the general population.Peer reviewe
Genome-Wide Association Study Implicates Atrial Natriuretic Peptide Rather Than B-Type Natriuretic Peptide in the Regulation of Blood Pressure in the General Population
Background Cardiomyocytes secrete atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) in response to mechanical stretching, making them useful clinical biomarkers of cardiac stress. Both human and animal studies indicate a role for ANP as a regulator of blood pressure with conflicting results for BNP. Methods and Results We used genome-wide association analysis (n=6296) to study the effects of genetic variants on circulating natriuretic peptide concentrations and compared the impact of natriuretic peptide-associated genetic variants on blood pressure (n=27059). Eight independent genetic variants in 2 known (NPPA-NPPB and POC1B-GALNT4) and 1 novel locus (PPP3CC) associated with midregional proANP (MR-proANP), BNP, aminoterminal proBNP (NT-proBNP), or BNP:NT-proBNP ratio. The NPPA-NPPB locus containing the adjacent genes encoding ANP and BNP harbored 4 independent cis variants with effects specific to either midregional proANP or BNP and a rare missense single nucleotide polymorphism in NT-proBNP seriously altering its measurement. Variants near the calcineurin catalytic subunit gamma gene PPP3CC and the polypeptide N-acetylgalactosaminyltransferase 4 gene GALNT4 associated with BNP:NT-proBNP ratio but not with BNP or midregional proANP, suggesting effects on the post-translational regulation of proBNP. Out of the 8 individual variants, only those correlated with midregional proANP had a statistically significant albeit weak impact on blood pressure. The combined effect of these 3 single nucleotide polymorphisms also associated with hypertension risk (P=8.2x10(-4)). Conclusions Common genetic differences affecting the circulating concentration of ANP associated with blood pressure, whereas those affecting BNP did not, highlighting the blood pressure-lowering effect of ANP in the general population.Peer reviewe
- …