99 research outputs found

    Identificação por "Multiplex PCR" do sorotipo monofásico e atípico Salmonella enterica subsp. enterica sorotipo 1,4,[5],12:i:-, no Estado de São Paulo, Brasil: freqüência e resistência antimicrobiana

    Get PDF
    Salmonella spp. are the etiologic agents of salmonellosis, a worldwide spread zoonoses causing foodborne outbreaks and clinical diseases. By serological identification, Salmonella enterica subsp. enterica serotype 1,4,[5],12:i:- accounted for 8.8% of human and 1.6% of nonhuman Salmonella strains isolated in São Paulo State, during 1991-2000. A total of 28.6% of them amplified a fragment corresponding to H:1,2 (flagellar phase two) through PCR analysis and were further assigned as S. Typhimurium. Antimicrobial resistance was detected in 36.3% of the 369 PCR-negative strains tested, including the multiresistance to ampicillin, chloramphenicol, sulfonamides, tetracycline, and streptomycin.Salmonella spp. é o agente etiológico da salmonelose, zoonose mundialmente distribuída e responsável por surtos de doenças transmitidas por alimentos e doenças clínicas. Sorologicamente, Salmonella enterica subsp. enterica sorotipo 1,4,[5],12:i:- correspondeu a 8,8% e 1,6% das cepas de Salmonella de origem humana e não-humana, respectivamente, isoladas no Estado de São Paulo, no decênio 1991-2000. Aproximadamente 28,6% destas cepas amplificaram o fragmento correspondente a H:1,2 (fase flagelar dois) em testes de PCR e foram, então, identificadas como S. Typhimurium. Das 369 cepas negativas em PCR, 36,3% apresentou resistência antimicrobiana, incluindo multirresistência a ampicilina, cloranfenicol, sulfonamidas, tetraciclina e estreptomicina

    Discovery and annotation of novel microRNAs in the porcine genome by using a semi-supervised transductive learning approach

    Get PDF
    Despite the broad variety of available microRNA (miRNA) prediction tools, their application to the discovery and annotation of novel miRNA genes in domestic species is still limited. In this study we designed a comprehensive pipeline (eMIRNA) for miRNA identification in the yet poorly annotated porcine genome and demonstrated the usefulness of implementing a motif search positional refinement strategy for the accurate determination of precursor miRNA boundaries. The small RNA fraction from gluteus medius skeletal muscle of 48 Duroc gilts was sequenced and used for the prediction of novel miRNA loci. Additionally, we selected the human miRNA annotation for a homology-based search of porcine miRNAs with orthologous genes in the human genome. A total of 20 novel expressed miRNAs were identified in the porcine muscle transcriptome and 27 additional novel porcine miRNAs were also detected by homology-based search using the human miRNA annotation. The existence of three selected novel miRNAs (ssc-miR-483, ssc-miR484 and ssc-miR-200a) was further confirmed by reverse transcription quantitative real-time PCR analyses in the muscle and liver tissues of Göttingen minipigs. In summary, the eMIRNA pipeline presented in the current work allowed us to expand the catalogue of porcine miRNAs and showed better performance than other commonly used miRNA prediction approaches. More importantly, the flexibility of our pipeline makes possible its application in other yet poorly annotated non-model species.info:eu-repo/semantics/acceptedVersio

    Detection of homozygous genotypes for a putatively lethal recessive mutation in the porcine argininosuccinate synthase 1 (ASS1) gene

    Get PDF
    The sequencing of the pig genome revealed the existence of homozygous individuals for a nonsense mutation in the argininosuccinate synthase 1 (ASS1) gene (rs81212146, c.944T>A, L315X). Paradoxically, an AA homozygous genotype for this polymorphism is expected to abolish the function of the ASS1 enzyme that participates in the urea cycle, leading to citrullinemia, hyperammonemia, coma and death. Sequencing of five Duroc boars that sired a population of 350 Duroc barrows revealed the segregation of the c.944T>A polymorphism, so we aimed to investigate its phenotypic consequences. Genotyping of this mutation in the 350 Duroc barrows revealed the existence of seven individuals homozygous (AA) for the nonsense mutation. These AA pigs had a normal weight despite the fact that mild citrullinemia often involves impaired growth. Sequencing of the region surrounding the mutation in TT, TA and AA individuals revealed that the A substitution in the second position of the codon (c.944T>A) is in complete linkage disequilibrium with a C replacement (c.943T>C) in the first position of the codon. This second mutation would compensate for the potentially damaging effect of the c.944T>A replacement. In fact, this is the most probable reason why pigs with homozygous AA genotypes at the 944 site of the ASS1 coding region are alive. Our results illustrate the complexities of predicting the consequences of nonsense mutations on gene function and phenotypes, not only because of annotation issues but also owing to the existence of genetic mechanisms that sometimes limit the penetrance of highly harmful mutations

    Integrating genome-wide co-association and gene expression to identify putative regulators and predictors of feed efficiency in pigs

    Get PDF
    International audienceAbstractBackgroundFeed efficiency (FE) has a major impact on the economic sustainability of pig production. We used a systems-based approach that integrates single nucleotide polymorphism (SNP) co-association and gene-expression data to identify candidate genes, biological pathways, and potential predictors of FE in a Duroc pig population.ResultsWe applied an association weight matrix (AWM) approach to analyse the results from genome-wide association studies (GWAS) for nine FE associated and production traits using 31K SNPs by defining residual feed intake (RFI) as the target phenotype. The resulting co-association network was formed by 829 SNPs. Additive effects of this SNP panel explained 61% of the phenotypic variance of RFI, and the resulting phenotype prediction accuracy estimated by cross-validation was 0.65 (vs. 0.20 using pedigree-based best linear unbiased prediction and 0.12 using the 31K SNPs). Sixty-eight transcription factor (TF) genes were identified in the co-association network; based on the lossless approach, the putative main regulators were COPS5, GTF2H5, RUNX1, HDAC4, ESR1, USP16, SMARCA2 and GTF2F2. Furthermore, gene expression data of the gluteus medius muscle was explored through differential expression and multivariate analyses. A list of candidate genes showing functional and/or structural associations with FE was elaborated based on results from both AWM and gene expression analyses, and included the aforementioned TF genes and other ones that have key roles in metabolism, e.g. ESRRG, RXRG, PPARGC1A, TCF7L2, LHX4, MAML2, NFATC3, NFKBIZ, TCEA1, CDCA7L, LZTFL1 or CBFB. The most enriched biological pathways in this list were associated with behaviour, immunity, nervous system, and neurotransmitters, including melatonin, glutamate receptor, and gustation pathways. Finally, an expression GWAS allowed identifying 269 SNPs associated with the candidate genes’ expression (eSNPs). Addition of these eSNPs to the AWM panel of 829 SNPs did not improve the accuracy of genomic predictions.ConclusionsCandidate genes that have a direct or indirect effect on FE-related traits belong to various biological processes that are mainly related to immunity, behaviour, energy metabolism, and the nervous system. The pituitary gland, hypothalamus and thyroid axis, and estrogen signalling play fundamental roles in the regulation of FE in pigs. The 829 selected SNPs explained 61% of the phenotypic variance of RFI, which constitutes a promising perspective for applying genetic selection on FE relying on molecular-based prediction

    A gene co-association network regulating gut microbial communities in a Duroc pig population

    Get PDF
    Background: Analyses of gut microbiome composition in livestock species have shown its potential to contribute to the regulation of complex phenotypes. However, little is known about the host genetic control over the gut microbial communities. In pigs, previous studies are based on classical "single-gene-single-trait" approaches and have evaluated the role of host genome controlling gut prokaryote and eukaryote communities separately. Results: In order to determine the ability of the host genome to control the diversity and composition of microbial communities in healthy pigs, we undertook genome-wide association studies (GWAS) for 39 microbial phenotypes that included 2 diversity indexes, and the relative abundance of 31 bacterial and six commensal protist genera in 390 pigs genotyped for 70 K SNPs. The GWAS results were processed through a 3-step analytical pipeline comprised of (1) association weight matrix; (2) regulatory impact factor; and (3) partial correlation and information theory. The inferred gene regulatory network comprised 3561 genes (within a 5 kb distance from a relevant SNP-P < 0.05) and 738,913 connections (SNP-to-SNP co-associations). Our findings highlight the complexity and polygenic nature of the pig gut microbial ecosystem. Prominent within the network were 5 regulators, PRDM15, STAT1, ssc-mir-371, SOX9 and RUNX2 which gathered 942, 607, 588, 284 and 273 connections, respectively. PRDM15 modulates the transcription of upstream regulators of WNT and MAPK-ERK signaling to safeguard naive pluripotency and regulates the production of Th1- and Th2-type immune response. The signal transducer STAT1 has long been associated with immune processes and was recently identified as a potential regulator of vaccine response to porcine reproductive and respiratory syndrome. The list of regulators was enriched for immune-related pathways, and the list of predicted targets includes candidate genes previously reported as associated with microbiota profile in pigs, mice and human, such as SLIT3, SLC39A8, NOS1, IL1R2, DAB1, TOX3, SPP1, THSD7B, ELF2, PIANP, A2ML1, and IFNAR1. Moreover, we show the existence of host-genetic variants jointly associated with the relative abundance of butyrate producer bacteria and host performance

    Co-expression network analysis predicts a key role of microRNAs in the adaptation of the porcine skeletal muscle to nutrient supply

    Get PDF
    The role of non-coding RNAs in the porcine muscle metabolism is poorly understood, with few studies investigating their expression patterns in response to nutrient supply. Therefore, we aimed to investigate the changes in microRNAs (miRNAs), long intergenic non-coding RNAs (lincRNAs) and mRNAs muscle expression before and after food intake. We measured the miRNA, lincRNA and mRNA expression levels in the gluteus medius muscle of 12 gilts in a fasting condition (AL-T0) and 24 gilts fed ad libitum during either 5 h. (AL-T1, N = 12) or 7 h. (AL-T2, N = 12) prior to slaughter. The small RNA fraction was extracted from muscle samples retrieved from the 36 gilts and sequenced, whereas lincRNA and mRNA expression data were already available. In terms of mean and variance, the expression profiles of miRNAs and lincRNAs in the porcine muscle were quite different than those of mRNAs. Food intake induced the differential expression of 149 (AL-T0/AL-T1) and 435 (AL-T0/AL-T2) mRNAs, 6 (AL-T0/AL-T1) and 28 (AL-T0/AL-T2) miRNAs and none lincRNAs, while the number of differentially dispersed genes was much lower. Among the set of differentially expressed miRNAs, we identified ssc-miR-148a-3p, ssc-miR-22-3p and ssc-miR-1, which play key roles in the regulation of glucose and lipid metabolism. Besides, co-expression network analyses revealed several miRNAs that putatively interact with mRNAs playing key metabolic roles and that also showed differential expression before and after feeding. One case example was represented by seven miRNAs (ssc-miR-148a-3p, ssc-miR-151-3p, ssc-miR-30a-3p, ssc-miR-30e-3p, ssc-miR-421-5p, ssc-miR-493-5p and ssc-miR-503) which putatively interact with the PDK4 mRNA, one of the master regulators of glucose utilization and fatty acid oxidation. As a whole, our results evidence that microRNAs are likely to play an important role in the porcine skeletal muscle metabolic adaptation to nutrient availability

    Genomic analysis of the origins of extant casein variation in goats

    Get PDF
    The variation in the casein genes has a major impact on the milk composition of goats. Even though many casein polymorphisms have been identified so far, we do not know yet whether they are evolutionarily ancient (i.e., they existed before domestication) or young (i.e., they emerged after domestication). Herewith, we identified casein polymorphisms in a data set of 106 caprine whole-genome sequences corresponding to bezoars (Capra aegagrus, the ancestor of domestic goats) and 4 domestic goat (Capra hircus) populations from Europe, Africa, the Far East, and the Near East. Domestic and wild goat populations shared a substantial number of casein SNP, from 36.1% (CSN2) to 55.1% (CSN1S2). The comparison of casein variation among bezoars and the 4 domestic goat populations demonstrated that more than 50% of the casein SNP are shared by 2 or more populations, and 18 to 44% are shared by all populations. Moreover, the majority of casein alleles reported in domestic goats also segregate in the bezoar, including several alleles displaying significant associations with milk composition (e.g., the A/B alleles of the CSN1S1 and CSN3 genes, the A allele of the CSN2 gene). We conclude that much of the current diversity of the caprine casein genes comes from ancient standing variation segregating in the ancestor of modern domestic goats

    Analysing the Expression of Eight Clock Genes in Five Tissues From Fasting and Fed Sows

    Get PDF
    In a previous study, we observed that circadian clock genes are differentially expressed in the skeletal muscle of fasting and fed sows. The goal of the current work was to investigate if these genes are also differentially expressed in tissues containing the central (hypothalamus) and peripheral (duodenum, dorsal fat, muscle, and liver) clocks. As animal material, we used 12 sows that fasted 12 h before slaughtering (T0) and 12 sows that were fed ad libitum 7 h prior slaughtering (T2). Tissue samples were collected immediately after slaughter and total RNA was subsequently extracted. The expression of the ARNTL, BHLHE40, CRY2, NPAS2, NR1D1, PER1, PER2, and SIK1 genes was measured by quantitative reverse transcription PCR. The numbers of clock genes showing differential expression before and after feeding varied depending on the tissue i.e., four in dorsal fat and duodenum, six in skeletal muscle, and seven in the liver. In contrast, none of the eight analysed genes displayed a significant differential expression in hypothalamus, the tissue where the central clock resides. This result supports that the differential expression of clock genes in the four tissues mentioned above is probably induced by nutrition and not by the central clock entrained by light. Moreover, we have observed that the NPAS2 and ARNTL genes display positive log2(FC) values in the five tissues under analysis, whilst the CRY2, PER1 (except dorsal fat) and PER2 (except hypothalamus) genes generally show negative log2(FC) values. Such result might be explained by the existence of a negative feedback loop between the ARNTL/NPAS2 and CRY/PER genes. Collectively, these results support that nutrition plays an important role in modulating the timing of porcine peripheral circadian clocks. Such regulation could be essential for coordinating the subsequent metabolic response to nutrient supply.info:eu-repo/semantics/publishedVersio

    Historical RNA expression profiles from the extinct Tasmanian tiger

    Get PDF
    Paleogenomics continues to yield valuable insights into the evolution, population dynamics, and ecology of our ancestors and other extinct species. However, DNA sequencing cannot reveal tissue-specific gene expression, cellular identity, or gene regulation, which are only attainable at the transcriptional level. Pioneering studies have shown that useful RNA can be extracted from ancient specimens preserved in permafrost and historical skins from extant canids, but no attempts have been made so far on extinct species. We extract, sequence, and analyze historical RNA from muscle and skin tissue of a ∼130-year-old Tasmanian tiger (Thylacinus cynocephalus) preserved in desiccation at room temperature in a museum collection. The transcriptional profiles closely resemble those of extant species, revealing specific anatomical features such as slow muscle fibers or blood infiltration. Metatranscriptomic analysis, RNA damage, tissue-specific RNA profiles, and expression hotspots genome-wide further confirm the thylacine origin of the sequences. RNA sequences are used to improve proteincoding and noncoding annotations, evidencing missing exonic loci and the location of ribosomal RNA genes while increasing the number of annotated thylacine microRNAs from 62 to 325. We discover a thylacine-specific microRNA isoform that could not have been confirmed without RNA evidence. Finally, we detect traces of RNA viruses, suggesting the possibility of profiling viral evolution. Our results represent the first successful attempt to obtain transcriptional profiles from an extinct animal species, providing thought-to-be-lost information on gene expression dynamics. These findings hold promising implications for the study of RNA molecules across the vast collections of natural history museums and from well-preserved permafrost remains

    Identification of genomic regions associated with morphological traits in Murciano-Granadina goats

    Get PDF
    Resumen del póster presentado a la 37th International Conference on Animal Genetics (ISAG), celebrada en Lleida (España) del 7 al 12 de julio de 2019.Morphological traits are of great importance to dairy goat production given their strong incidence on milk yield and longevity. However, their genomic architecture has not yet been extensively characterized. Murciano-Granadina is one of the most important goat dairy breeds in Spain, and its breeding program includes the measurement of 17 morphological traits related to udder, feet and body conformation. Our aim was to identify genomic regions associated with these 17 different morphological traits by performing a genome-wide association analysis (GWAS). A total of 722 Murciano-Granadina female goats with linear evaluation records of each morphological trait were genotyped with the Goat SNP50 BeadChip. Raw phenotypes were corrected for fixed factors (farm, age, number of births and milking stage at the scoring date). After quality control of the data, genome-wide association analyses and chromosome-wide association analyses were performed by using the genome-wide efficient mixed-model association (GEMMA) software. We found no significant associations between the typed SNPs and the studied traits at the genome-wide level. However, the chromosome-wide analysis made possible to identify 3 SNPs associated with diameter and positioning of the nipples in chromosomes 26 and 28. Interestingly, one significant SNP on chromosome 26 was located downstream the FGFBP3 gene, which modulates FGFR signaling, one of the main pathways determining the proper development of mammary stem cells. With regard to body conformation, SNPs on chromosome 17 were found to be associated with the chest width. These SNPs mapped to the genes ZNF268 and ZNF827, which encode zinc finger proteins playing important roles in cell growth, proliferation, development, apoptosis, and intracellular signal transduction. Our results suggest a strong additive polygenic background for these morphological traits since we were unable to identify any region on the genome with major effects on their phenotypic variance
    corecore