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Abstract

Background: Analyses of gut microbiome composition in livestock species have shown its potential to contribute
to the regulation of complex phenotypes. However, little is known about the host genetic control over the gut
microbial communities. In pigs, previous studies are based on classical “single-gene-single-trait” approaches and
have evaluated the role of host genome controlling gut prokaryote and eukaryote communities separately.

Results: In order to determine the ability of the host genome to control the diversity and composition of microbial
communities in healthy pigs, we undertook genome-wide association studies (GWAS) for 39 microbial phenotypes
that included 2 diversity indexes, and the relative abundance of 31 bacterial and six commensal protist genera in
390 pigs genotyped for 70 K SNPs. The GWAS results were processed through a 3-step analytical pipeline comprised
of (1) association weight matrix; (2) regulatory impact factor; and (3) partial correlation and information theory. The
inferred gene regulatory network comprised 3561 genes (within a 5 kb distance from a relevant SNP–P < 0.05) and
738,913 connections (SNP-to-SNP co-associations). Our findings highlight the complexity and polygenic nature of
the pig gut microbial ecosystem. Prominent within the network were 5 regulators, PRDM15, STAT1, ssc-mir-371, SOX9
and RUNX2 which gathered 942, 607, 588, 284 and 273 connections, respectively. PRDM15 modulates the
transcription of upstream regulators of WNT and MAPK-ERK signaling to safeguard naive pluripotency and regulates
the production of Th1- and Th2-type immune response. The signal transducer STAT1 has long been associated with
immune processes and was recently identified as a potential regulator of vaccine response to porcine reproductive
and respiratory syndrome. The list of regulators was enriched for immune-related pathways, and the list of
predicted targets includes candidate genes previously reported as associated with microbiota profile in pigs, mice
and human, such as SLIT3, SLC39A8, NOS1, IL1R2, DAB1, TOX3, SPP1, THSD7B, ELF2, PIANP, A2ML1, and IFNAR1.
Moreover, we show the existence of host-genetic variants jointly associated with the relative abundance of butyrate
producer bacteria and host performance.
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Conclusions: Taken together, our results identified regulators, candidate genes, and mechanisms linked with
microbiome modulation by the host. They further highlight the value of the proposed analytical pipeline to exploit
pleiotropy and the crosstalk between bacteria and protists as significant contributors to host-microbiome
interactions and identify genetic markers and candidate genes that can be incorporated in breeding program to
improve host-performance and microbial traits.
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Background
The gut microbiota is a diverse ecosystem predomin-
antly dominated by bacteria, but other microorgan-
isms such as fungi and protists are also present.
Influenced by the host immunity and environmental
factors such as age, diet, and geography, the gut
microbiota is known to be involved in many physio-
logical functions as well as in disease pathogenesis
(see for instance the recent reviews of Richard and
Sokol, 2019 [1]; Torp Austvoll et al. 2020 [2]).
Lagging behind humans and model organisms, stud-

ies of the gut microbiome in livestock species have
dramatically increased over the last decade thanks to
a decreased metagenome next-generation sequencing
cost. In the particular case of the pig, these studies
have provided valuable information into the gut
microbiota compositional changes, as well as associa-
tions between the porcine gut microbial communities
and production traits [3–8]. In contrast, little is
known about the host genetic control over the gut
microbial communities in pigs. Previous studies based
on classical “single-gene-single-trait” approaches and
have independently evaluated the role of host-genetic
genome controlling pig gut prokaryote [9–11] or
eukaryote communities [5]. Therefore, ignoring the
crosstalk between bacterial and protist communities,
but also the contribution of gene-by-gene interactions
shaping the pig gut microbial ecosystem. In their re-
view, Aluthge et al. (2019) [12] identified the lack of
sophisticated computational and bioinformatics ap-
proaches as the major bottleneck to look beyond
compositional changes and instead understand the
functional causative role of the pig gut microbiome.
To address this void, we propose an association weight

matrix approach (AWM) [13, 14] to generate a gene co-
association network where nodes are SNP mapped to or
nearby gene coding regions, and found to be associated
with the diversity and abundance of 31 bacterial and 6
commensal protist genera in the gut of 390 pigs geno-
typed for 70 K SNPs. In building and interpreting the
network, we place emphasis on gene regulators respon-
sible for the crosstalk between the host bacterial and
protists communities.

Methods
Animal care and experimental procedures were carried
out following national and institutional guidelines for
the Good Experimental Practices and were approved by
the IRTA Ethical Committee.

Animals, sample collection, and gut microbiome
phenotypes
The pigs employed in this study are a subset of those re-
ported in Ramayo-Caldas et al. (2020) [5]. In brief, we
used a total of 405 weaned piglets (204 males and 201
females) distributed in seven batches. Samples were col-
lected in a commercial farm at 60 ± 8 days of age. Fecal
DNA was extracted with the DNeasy PowerSoil Kit
(QIAGEN, Hilden, Germany), following manufacturer’s
instructions. The 16S rRNA gene fragment was ampli-
fied using the primers V3_F357_N: 5′-CCTACGGGNG
GCWGCAG-3′ and V4_R805: 5′-GACTACHVGGGTA
TCTAATCC-3′. Protist-specific primers F-566: 5′-CAG-
CAGCCGCGGTAATTCC-3′ and R-1200: 5′-CCCGTG
TTGAGTCAAATTAAGC-3′ were used to amplify the
18S rRNA gene fragment. Amplicons were paired-end
(2 × 250 nt) sequenced on an Illumina NovaSeq (Illu-
mina, San Diego, CA, USA) at the University of Illinois
Keck Center. Sequences were analyzed with QIIME2
[15] and processed into amplicon sequences variants
(ASVs) at 99% of identity. Samples with less than 10,000
reads were excluded and ASVs present in less than three
samples and representing less than 0.005% of the total
counts were discarded. ASVs were classified to the low-
est possible taxonomic level based on SILVA v123 data-
base for 18S rRNA genes, and GreenGenes Database for
Bacteria [16]. Bacteria and protist alpha diversity were
evaluated with the Shannon index (Shannon, 1948); be-
fore the estimation of diversity indexes, samples were
rarefied at 10,000 reads of depth. Finally, ASVs were ag-
gregated at genera level, and only those genus present in
more than 60% of the samples were considered in poste-
riors data analysis. In total, we captured 39 microbiome
phenotypes that included 2 diversity indexes, and the
relative abundance of 31 bacterial and 6 commensal pro-
tist genera. (Supplementary Table 1).
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Genotypes and genome-wide association studies (GWAS)
The Porcine 70 K GGP Porcine HD Array (Illumina, San
Diego, CA) was used to genotype 390 out of 405 ani-
mals. We excluded single nucleotide polymorphisms
(SNPs) with minor allele frequencies < 5%, rates of miss-
ing genotypes above 10%, as well as SNPs that did not
map to the porcine reference genome (Sscrofa11.1 as-
sembly). Then, to identify SNPs from the host genome
associated with the alpha diversity as well as bacteria
and protists relative abundances, a series of 39 GWAS
were performed between 42,562 SNPs and the alpha di-
versity or the centered log ratio (clr) transformed genera
abundance. For the GWAS, we used the GCTA software
[17] using the following model at each SNP:

yijk ¼ sex j þ bk þ ui þ slial þ eijk

where yijk corresponds to the microbiome phenotype
under scrutiny of the i-th individual animal of sex j in
the k-th batch; sexj and bk correspond to the systematic
effects of j-th sex (2 levels) and k-th batch (7 levels), re-
spectively; ui is the random additive genetic effect of the
i-th individual, collectively distributed as u ~N(0, σ2u G)
where σ2u is the additive genetic variance and G is the
genomic relationship matrix calculated using the filtered
autosomal SNPs based on the methodology of Yang
et al. (2011) [17]; sli is the genotype (coded as 0,1,2) for
the l-th SNP of the i-th individual, and al is the allele
substitution effect of the l-th SNP on the microbiome
phenotype being analyzed. Following [18] and with
equivalent original derivations from [19], FDR was calcu-
lated as

FDR ¼
P 1 −

A
T

� �

A
T

� �
1 − Pð Þ

Where P is the P value tested, A is the number of SNP
that were significant at the P value tested, and T is the
total number of SNP tested. For further analyses and in
order to allow for direct comparison across phenotypes,
estimated SNP effects were standardized by dividing
them by the standard deviation of all SNP effects.

Association weight matrix, regulatory impact factors, and
gene co-association networks
We used the AWM methodology [13, 14] in combin-
ation with the regulatory impact factors (RIF) algorithm
[20] to identify the SNP, anchored to genes, to be in-
cluded in the co-association gene network. Genes in the
AWM are tagged by SNP that were found to be either
associated with the key phenotype (alpha diversity),
pleiotropic, or key regulators. In detail, the AWM was
built in accordance with the following steps:

Initial search of SNP in genes (SNP-gene)
Using a population of 20 European pig breeds, Muñoz
et al. (2019) [21] reported linkage disequilibrium of r2 >
0.2 for SNP pairs separated by 0.05Mb. Therefore, we
selected SNP located in the coding region or within 5 kb
of an annotated gene based on the Sscrofa11.1 reference
genome assembly.

SNP-genes associated with key phenotypes
Using the alpha diversity indexes for bacteria and
protists as key phenotypes, we selected those SNP-Gene
associated with alpha diversity and namely diversity-
associated SNPs.

SNP-genes with pleiotropic potential
We captured the average number of phenotypes to
which the diversity-associated SNPs were associated
with, namely NA, and selected the remaining SNP-Genes
associated (P < 0.05) to more than NA phenotypes and
referred to as pleiotropic SNPs.

SNP-genes with regulatory potential
We used the RIF algorithm [20] to identify key regula-
tory SNP. Details are as follows.
To undertake the RIF analysis, we considered the

diversity-associated SNPs and the pleiotropic SNP as po-
tential targets of all the SNP-Genes annotated as either
transcription factors (TF) or microRNA genes (miRNA).
The RIF algorithm is designed to detect loci with high
regulatory potential in a set of loci, TFs, and microRNA
genes in our case, while contrasting two biological con-
ditions or groups, such as bacteria and protists in our
case. The analysis makes use of two metrics: RIF1 and
RIF2. While RIF1 prioritizes regulators that are consist-
ently the most differentially co-associated with the
highly associated potential target genes, RIF2 highlights
regulators with the most altered abilities to predict the
association of potential target genes.
To identify significant gene–gene interactions, we used

the partial correlation and information theory (PCIT)
algorithm [22] which calculates pairwise correlations
between loci while accounting for the influence of a
third locus. Unlike likelihood-based approaches, which
invoke a parametric distribution (e.g., normal) assumed
to hold under the null hypothesis and then a nominal P
value (e.g., 5%) used to ascertain significance, PCIT is an
information theoretic approach. Its threshold is an in-
formative metric; in this case, the partial correlation
after exploring all trios in judging the significance of a
given correlation, which might then become a connec-
tion when inferring a network. It thereby tests all pos-
sible 3-way combinations in a dataset and only keeps
correlations between loci if they are significant and inde-
pendent of the expression of another locus, whereas no
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hard threshold is set for the correlation strength. The
significance threshold for each combination of loci de-
pends on the average ratio of partial to direct correla-
tions. Gene interactions were predicted using correlation
analysis of the SNP effects across pairwise rows of the
AWM. Hence, the AWM-predicted gene interactions
are based on significant co-association between SNP. In
the network, every node represents a gene (or SNP),
whereas every edge connecting two nodes represents a
significant gene–gene interaction (based on SNP–SNP
co-association). Finally, the Cytoscape software [23] was
used to visualize the gene network and the CentiScaPe
plugin [24] was used to calculate specific node centrality
values and network topology parameters.

Transcription factor binding motifs search
To further investigate the alleged role of the most rele-
vant TFs, i.e., the PR/Set domain 15 (PRDM15) and the
signal transducer and activator of transcription 1
(STAT1), a TF-binding motif search was implemented in
the promoter region of the predicted target genes (i.e.,
genes with significant associations according to the
AWM approach for PRDM15 and STAT1. To this end,
we established putative promoter regions 1 kb upstream
from the start of the coding region of each target gene
and downloaded the corresponding sequences in the
Sscrofa11.1 porcine assembly according to Ensembl re-
positories [25], by means of the BioMart tool (https://
www.ensembl.org/biomart/martview/). Transcription
factor binding motifs for PRDM15 and STAT1 genes
were retrieved from JASPAR database v.2020 [26] repre-
sented as position frequency matrices (PFMs). The
FIMO algorithm [27] within MEME Suite [28] was
subsequently employed for scanning individual matches
between PFMs and retrieved promoter sequences. The
Scrofa11.1 assembly was used for building a zero-order
Markov model and integrated in FIMO calculations in
order to correct for possible biases in nucleotide propor-
tions. Motif occurrences with estimated P value below
10− 4 were considered significant and retained for further
analyses.

MicroRNA-binding sites search and structural inference
Following the rationale for detecting putative functional
interactions among the set of key regulators identified
by the AWM approach, we aimed at determining
whether miRNA-mRNA significant co-associations
found for relevant miRNA regulator genes were sug-
gestive of an interaction between the miRNA and their
co-associated mRNA transcripts. In this way, the ssc-
miR-371 gene was among the top regulatory factors ac-
cording to RIF metrics. The mRNA genes harboring
SNPs significantly co-associated with the polymorphism
within miR-371 (rs320008166, n.59 T > C) gene were

retrieved and their 3′-UTR sequences according to the
Sscrofa11.1 assembly annotation in Ensembl repositor-
ies [25] were downloaded by means of the BioMart tool
(https://www.ensembl.org/biomart/martview/). In order
to obtain a putative list of targeted mRNAs by ssc-miR-
371, the seed region of the miRNA (2nd to 8th 5′
nucleotides of the mature miRNA) was reverse com-
plemented and miRNA binding sites comprising per-
fect sequence matches between the seed and the
retrieved 3′-UTRs (7mer-m8 sites) were assessed by
using the locate tool from the SeqKit toolkit [29].
The potential structural consequences of rs320008166
(n.59 T > C) in the hairpin organization of ssc-miR-
371 precursor transcript was assessed with the RNA-
fold software [30].

Results
Gene-tailored association between microbial traits
Table 1 lists the number of significant SNP and false dis-
covery rate (FDR) at three nominal P value thresholds (P
value < 0.05, 0.01, and 0.001) across the 39 phenotypes
that were subjected to GWAS. The results highlight the
trade-off that exists between significant SNP (the higher
the better) and the FDR (the lower the better) as P
values become more stringent. On average across the 39
phenotypes, the number of significant SNP (average
FDR in brackets) at P values < 0.05, 0.01, and 0.001 was
4015.3 (FDR = 50.6%), 272.8 (FDR = 16.5%), and 87.6
(FDR = 5.8%), respectively. At the most stringent P value
threshold of < 0.001, the highest number of significant
SNP (N = 381; FDR = 1.1%) was obtained for the abun-
dance of Faecalibacterium. On the other extreme, the
lowest number of significant SNP (N = 25; FDR = 17.0%)
was obtained for the abundance of Catenibacterium.
Details of the genome map position and strength of the
statistical association of the most significant SNP in each
of the 39 phenotypes are given in Table 2. For each
SNP–phenotype pair, the distance to and identity of the
nearest gene is also listed in Table 2. With five instances,
Chromosome 8 harbored the highest number of most
associated SNP including one in the coding region of
SORCS2 (SNP rs320095924) and one in the coding re-
gion of TRIM2 (rs329143797).
The results of GWAS served as the basis for the

AWM, the gene co-association network, and the regula-
tory impact factor approaches. In a first step, for all 39
phenotypes, estimated SNP effects were standardized by
dividing them by the standard deviation of all SNP ef-
fects. After applying the analytical pipeline described in
the “Methods” sections, the resulting AWM was com-
prised of 3561 SNP anchored to individual genes of
which 121 were annotated as TF and 7 microRNA genes.
In addition, there were 47 key regulators according to
the RIF analyses including 3 microRNA genes. Notably,
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10 of the 47 key regulators did not have a significant as-
sociation (P < 0.05) with any of the phenotypes and
their relevance would have been overlooked by

GWAS alone. For the remaining 3551 genes, the
number of associated phenotypes ranged from 1 to 13
and averaged 3.79. A total of 84.08% of the SNPs

Table 1 Number of significant SNP (N) and false discovery rate (FDR, %) at three nominal P value thresholds and across the 39
phenotypes

Phenotype P value < 0.05 P value < 0.01 P value < 0.001

N FDR, % N FDR, % N FDR, %

Anaerovibrio 3836 53.13 355 11.90 105 4.04

Blautia 3803 53.64 232 18.26 88 4.82

Bulleidia 4114 49.18 196 21.63 77 5.51

Butyricicoccus 3830 53.22 255 16.60 92 4.61

Campylobacter 4088 49.53 271 15.62 69 6.15

Catenibacterium 4407 45.56 164 25.87 25 17.01

Clostridium 4024 50.40 211 20.09 67 6.34

Collinsella 3969 51.17 290 14.59 73 5.82

Coprococcus 4152 48.68 269 15.73 68 6.24

Desulfovibrio 3797 53.73 203 20.88 70 6.07

Dorea 4170 48.45 226 18.75 63 6.74

Faecalibacterium 3644 56.21 750 5.58 387 1.08

Fibrobacter 4032 50.29 225 18.83 66 6.43

Gemmiger 4077 49.68 238 17.80 43 9.88

Lachnospira 4192 48.17 248 17.07 64 6.64

Lactobacillus 3966 51.21 291 14.54 103 4.12

Megasphaera 4027 50.36 234 18.10 69 6.15

Mitsuokella 4201 48.06 211 20.09 58 7.32

Oscillospira 4161 48.57 198 21.41 68 6.24

Parabacteroides 4206 47.99 211 20.09 45 9.44

Peptococcus 4254 47.39 319 13.25 95 4.47

Phascolarctobacterium 3921 51.86 278 15.22 129 3.28

Prevotella 3952 51.41 267 15.85 66 6.43

RFN20 3946 51.50 299 14.14 101 4.20

Roseburia 4025 50.39 264 16.03 59 7.20

Ruminococcus 4015 50.53 265 15.97 97 4.37

Sphaerochaeta 4143 48.80 213 19.90 68 6.24

Streptococcus 4060 49.91 260 16.28 73 5.82

Succinivibrio 4071 49.76 314 13.46 99 4.28

Sutterella 4016 50.51 248 17.07 81 5.24

Treponema 3966 51.21 307 13.77 102 4.16

AlphaBACT 3960 51.30 314 13.46 89 4.77

Entamoeba 3849 52.92 335 12.61 117 3.62

Hypotrichomonas 3897 52.21 230 18.42 67 6.34

Trichomitus 3944 51.52 307 13.77 126 3.36

Tetratrichomonas 3998 50.76 266 15.91 64 6.64

Neobalantidium 3828 53.24 297 14.24 139 3.05

Blastocystis 3859 52.77 320 13.21 78 5.44

AlphaPROTO 4195 48.13 259 16.34 67 6.34
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mapped within genes and the 15.92% were located
upstream/downstream of annotated genes. Correla-
tions between microbial traits were calculated using
AWM columns (standardized SNP effects across

bacteria and protists diversity and abundance) and
were visualized as a hierarchical tree cluster, in which
strong positive and negative correlations are displayed
as proximity and distance, respectively (Fig. 1).

Table 2 Genome map position and strength of the association for most significant SNP in each of the 39 phenotypes

Phenotype SNP Chr Bp Candidate gene Distance to gene (Bp) Effect P value

Anaerovibrio rs320095924 8 3,650,253 SORCS2 0 − 0.364 8.89E−09

Blautia rs331690240 23 14,234,646 ENSSSCG00000050465 0 0.475 2.14E−21

Bulleidia rs340048252 11 69,840,940 NALCN 0 1.086 5.29E−17

Butyricicoccus rs81361511 2 96,004,482 ENSSSCG00000041042 71,388 − 0.882 2.43E−15

Campylobacter rs81472036 18 15,768,346 EXOC4 0 − 0.708 6.09E−07

Catenibacterium rs81323962 3 74,840,151 ETAA1 103,387 − 0.567 8.52E−08

Clostridium rs81251808 4 60,750,431 HNF4G 113,341 − 0.325 3.72E−09

Collinsella rs81430153 11 18,229,756 PHF11 0 0.771 4.32E−07

Coprococcus rs81344777 3 4,420,359 RBAK 2425 − 0.223 1.26E−07

Desulfovibrio rs331690240 23 14,234,646 ENSSSCG00000050465 0 1.052 3.81E−14

Dorea rs81248474 6 8,320,740 ENSSSCG00000042592 0 − 0.199 1.34E−09

Faecalibacterium rs81288412 13 121,545,470 ENSSSCG00000050978 3524 0.237 1.07E−17

Fibrobacter rs343652685 1 174,156,779 ENSSSCG00000047027 156,250 1.092 3.99E−09

Gemmiger rs80980706 17 58,651,427 VAPB 6509 0.269 1.37E−08

Lachnospira rs329723588 15 137,647,629 SCLY 0 − 0.545 1.84E−08

Lactobacillus rs81235044 4 121,603,127 ENSSSCG00000046641 100,786 − 0.743 2.77E−09

Megasphaera rs81371842 3 65,644,946 ENSSSCG00000042171 273,629 − 1.085 1.23E−08

Mitsuokella rs81358080 2 41,479,089 ENSSSCG00000047282 5730 − 1.094 3.68E−08

Oscillospira rs81344398 6 34,452,081 ENSSSCG00000042964 722 − 0.223 4.09E−10

Parabacteroides rs81242782 5 71,843,440 LRRK2 0 − 0.763 2.83E−06

Peptococcus rs81253718 2 43,124,329 ENSSSCG00000045584 48,027 − 0.907 1.44E−09

Phascolarctobacterium rs344728746 15 6,453,282 ENSSSCG00000042287 110,243 − 0.289 2.32E−09

Prevotella rs329143797 8 75,777,330 TRIM2 0 0.178 1.56E−06

RFN20 rs81345563 2 44,851,717 ENSSSCG00000033786 38,407 − 0.571 7.63E−12

Roseburia rs81222575 8 19,050,584 ENSSSCG00000041382 5304 − 0.375 1.11E−08

Ruminococcus rs339681838 14 35,548,936 FBXW8 0 0.133 1.26E−07

Sphaerochaeta rs81222575 8 19,050,584 ENSSSCG00000041382 5304 0.776 3.58E−08

Streptococcus rs80787622 11 24,468,975 TNFSF11 0 1.503 2.43E−12

Succinivibrio rs345030123 6 267,415 FANCA 0 0.967 3.82E−09

Sutterella rs322099448 8 74,295,221 RBM46 16,663 0.826 4.34E−12

Treponema rs340048252 11 69,840,940 NALCN 0 − 0.850 2.80E−10

AlphaBACT rs331027938 7 118,897,310 ENSSSCG00000044157 12,891 0.141 1.10E−07

Entamoeba rs81323991 12 12,377,085 ENSSSCG00000043117 7568 1.175 1.71E−08

Hypotrichomonas rs334181413 18 4,567,215 ENSSSCG00000016426 0 − 1.404 9.73E−09

Trichomitus rs81382396 4 10,874,687 ENSSSCG00000047619 0 1.257 5.98E−07

Tetratrichomonas rs81280147 9 99,713,062 CD36 0 − 0.960 1.57E−08

Neobalantidium rs81323206 6 81,951,114 IFNLR1 37,030 − 1.948 7.05E−09

Blastocystis rs320737267 17 46,864,439 TTPAL 10,153 1.030 2.81E−12

AlphaPROTO rs80782515 17 28,489,220 RALGAPA2 0 0.373 9.83E−11
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Gene co-association network linked to microbial
phenotypes
Supplementary Fig. 1 shows an overview of the
PCIT-inferred gene co-association network for 3561
SNP-Genes included in the AWM procedure, that
connected by 738,913 edges of which 374,116 were
positive and 364,797 were negative. In the network,
node color indicates the phenotype with the stron-
gest association (Supplementary Fig. 1). The network
is characterized by a large central module where
most of the bacteria vs. protists crosstalk takes place,

surrounded by lots of smaller modules mostly
phenotype specific. Reflecting the pleiotropic nature
of the AWM, while the key phenotypes to capture
SNP-Genes were the bacteria and protist alpha
diversities, these only represent a minority of the
genes: 241 for bacteria alpha diversity (dark blue
nodes) and 231 for protist alpha diversity (bright red
nodes). In contrast, other bacteria abundance was
captured by 2568 genes (light blue nodes), while
other protist abundance phenotypes were captured
by 521 genes (orange nodes).

Fig. 1 SNP co-association correlation: heatmap of the correlation matrix across 32 bacteria (prefix “B_”) and 7 protist (prefix “P_”) phenotypes
based on the 3561 SNP-Genes included in the AWM
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Key regulators in the network
The RIF analyses identified 47 key regulators among
genes selected in the AWM procedure, and these are
listed in Table 3, and Fig. 2 resumes the gene co-
association sub-network comprising the 47 regulators
identified by RIF. Prominent among the 47 key regula-
tors were PRDM15, STAT1, ssc-mir-371, SOX9, and
RUNX2 which gathered 942, 607, 588, 284, and 273 con-
nections, respectively (Table 3). PRDM15 was associated
with 10 traits and was the regulator showing the highest
pleotropic value (Table 1). PRDM15 is a zinc-finger
sequence-specific chromatin factor that modulates the
transcription of upstream regulators of WNT and
MAPK-ERK signaling to safeguard naive pluripotency
and regulates the production of Th1-and Th2-type
immune response [31]. Similarly, the microRNA ssc-
mir-371 has been reported to play an important role in
pluripotent regulation in pigs [32]. On the other hand,
mice with depleted gut microbiome have been found to
develop liver damage and bone loss through the medi-
ation of SOX9 [33] and RUNX2 [34], respectively. The
signal transducer STAT1 was associated with five micro-
bial traits (Table 3). STAT1 has long been associated
with immune processes and was recently identified as a
potential regulator of vaccine response to porcine repro-
ductive and respiratory syndrome [35]. It should be
noted that between 32 and 22.5% of the predicted target
genes had at least one TF-binding site for STAT1 and
PRDM15, respectively (Supplementary Table 2). Regard-
ing the microRNA ssc-mir-371, a total of 155 binding
sites were identified (Supplementary Table 3), compris-
ing a total of 71 different mRNA genes (12% of the ini-
tial 588 co-associated genes). The search for background
random miRNA-binding sites in the reverse complemen-
ted 3′-UTRs gave a total of 115 different binding sites
(Supplementary Table 3), comprising 48 different mRNA
genes, i.e., the expected number of miRNA 7mer-m8
binding sites for ssc-miR-371 seed was increased by 1.48
folds compared with background random miRNA-
mRNA interactions. When we assessed the putative
structural consequences of the presence of the
rs320008166 (n.59 T > C) mutated allele, a reduction in
the minimum free energy (MFE) of the folding of the
precursor miRNA hairpin was highlighted. More specif-
ically, the presence of the alternative C allele at position
59th of the precursor region of the miRNA implied the
stabilization of a G:U wobble pairing in the wild-type
miRNA sequence, introducing a stable canonical
Watson-Crick G:C pairing. While the miRNA hairpin
carrying the T allele had a MFE = − 35.44 kcal/mol, the
presence of the T allele implied an estimated MFE = −
37.74 kcal/mol. Overall, in agreement with AWM
original publication [13], here we provide a promoter se-
quence in silico validation of some of the predicted TF-

target genes and also for the first time predicted miRNA
target genes.
A closer inspection of values in Table 3 reveals some

fascinating relationships. Pleiotropy (measured by the
number of significantly associated phenotypes) and con-
nectivity (number of first neighbors in the co-association
network) are significantly correlated (r = 0.571; P value
< 0.0001), suggesting that both metrics are indicators of
the pluripotential capacity of the regulators. This finding
is of relevance because while pleiotropy was computed
from the number of significant phenotypes in the
GWAS, the number of connections is a feature of the
connectivity in a co-association network. Two vastly
different concepts which, when pointing to the same
outcome, underscore the relevance of, in this case,
regulators. Similarly, while RIF1 and RIF2 scores are
moderately correlated (r = 0.421; P value < 0.01), only
RIF2 is significantly correlated with pleiotropy (r = 0.471;
P value < 0.001) and more significantly with connectivity
(r = 0.806; P value < 0.0001). This relationship, to our
knowledge, never before documented, indicates the abil-
ity of RIF2 scores to prioritize regulators that, in our
case study, have an uncanny ability to address the ‘bac-
teria vs. protists’ crosstalk by differentiating between
genes associated with bacterial traits from those associ-
ated with protists phenotypes, i.e., the contrast used in
developing RIF. To further explore ‘bacteria vs. protists’
crosstalk, Fig. 3 shows the 3-way relationship between a
gene’s association with alpha diversity in bacteria, alpha
diversity in protists, and its pleiotropy across the 3561
SNP-Genes included in the AWM. While alpha diver-
sities indexes were the key phenotypes used to capture
genes for the AWM, a further step aimed at identifying
genes with pleiotropic potential (see “Methods”). The
plateau of the surface revealed by Fig. 3 indicates that
indeed SNP-Genes with near-zero non-significant
association with alpha diversity phenotypes were still
significantly associated across a large number of other
microbial abundance phenotypes which reflect their po-
tential pleiotropic effect.

Discussions
In this study, we propose a system biology approach to
identify candidate genes, regulators, and biological path-
ways associated with 39 microbial traits. The cluster dis-
tribution based on the estimated additive value mirrored
the distinct community composition types (enterotype
clusters) as well as the known co-occurrence patterns of
the pig gut microbiota [4]. For instance, pig gut entero-
types driver taxon Prevotella and Mitsuokella clustered
together and distantly of a second cluster that includes
Treponema and Ruminococcus (Fig. 1). We also noted
that butyrate producer genera such as Faecalibacterium,
Dorea, Blautia, Butyrococcus, and Coprococcus tend to
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Table 3 List of 47 key regulators revealed by the regulatory impact factors (RIF) analyses and their RIF1 and RIF2 scores, standardized
association to the bacteria (Alpha_B) and protist (Alpha_P) diversity, phenotype of strongest association, pleiotropy, and number of
connections in the PCIT-inferred network

Regulator RIF1 RIF2 Alpha_B Alpha_P Top_Association Pleio Conn

PRDM15 0.648 2.806 0.239 0.277 B_Treponema 10 942

HOXD12 1.342 2.536 − 0.667 − 0.624 B_Sphaerochaeta 1 910

ZNF514 0.045 2.607 − 2.938 0.310 B_Sphaerochaeta 5 889

KIAA1549 1.270 2.715 − 1.701 − 1.465 B_RFN20 3 812

KLF7 − 5.625 0.204 − 0.603 1.249 B_Bulleidia 2 807

CREB3L2 − 2.411 0.511 − 0.694 0.818 B_Sphaerochaeta 0 676

TFE3 − 0.127 2.144 1.045 − 0.216 B_Phascolarctobacterium 3 627

TBX15 2.506 1.414 − 0.373 − 1.229 B_Anaerovibrio 2 617

STAT1 − 1.464 2.285 − 1.043 0.370 B_Catenibacterium 5 607

PURG 1.542 2.173 − 1.320 0.338 B_Sphaerochaeta 2 595

ssc-mir-371 − 2.848 1.073 1.181 − 0.690 B_Roseburia 3 588

MTA3 0.390 2.097 − 0.952 − 0.107 P_Hypotrichomonas 2 556

OSR2 − 2.512 − 0.194 0.270 0.005 B_Lachnospira 3 473

DBX1 − 2.047 − 0.129 − 2.207 − 1.577 B_Peptococcus 4 468

UNCX − 3.085 − 0.194 − 0.051 1.258 B_Desulfovibrio 1 426

MYEF2 − 0.754 − 2.657 1.215 2.430 B_Fibrobacter 4 391

GBX1 − 0.730 − 2.439 − 0.245 − 1.460 B_Campylobacter 2 380

ZNF134 − 2.419 0.128 − 0.572 1.686 B_Lactobacillus 2 370

ZNF606 − 2.419 0.128 − 0.572 1.686 B_Lactobacillus 2 370

SOX9 − 2.524 − 0.404 − 0.498 0.096 B_Anaerovibrio 0 284

KMT2C − 0.311 − 2.260 − 0.628 − 0.811 B_Catenibacterium 3 281

RUNX2 − 3.631 − 1.878 − 0.206 − 1.776 B_Collinsella 3 273

ELF2 − 1.740 − 2.300 − 0.739 1.688 B_Mitsuokella 1 245

ZNF322 − 2.079 − 0.792 − 0.233 0.809 B_Collinsella 2 229

IRF2 − 0.764 − 2.656 − 0.697 − 1.697 B_Peptococcus 0 209

GTF2IRD1 2.117 0.660 − 1.421 0.132 B_Lachnospira 0 206

ZNF516 2.099 0.150 2.010 0.690 B_Fibrobacter 2 195

NFE2L2 − 2.077 − 0.227 0.705 − 0.051 B_Coprococcus 1 183

NCOR1 − 1.999 − 0.455 − 1.007 1.063 B_Coprococcus 2 165

KLF14 − 2.287 − 2.255 − 0.327 − 1.073 B_Sutterella 1 161

ZGLP1 2.029 − 0.491 0.577 0.729 B_Butyricicoccus 3 161

TCF4 − 2.497 − 1.382 0.280 − 0.333 B_Clostridium 1 150

TP73 − 2.788 − 0.275 0.633 − 1.082 B_Campylobacter 1 146

ZNF782 − 2.831 − 0.500 0.382 − 1.811 B_Desulfovibrio 0 132

SALL1 − 1.133 − 2.716 − 0.833 − 2.125 P_AlphaPROTO 2 131

TOX3 − 2.335 − 2.043 0.365 1.641 B_Lactobacillus 1 129

TRERF1 − 2.359 − 1.043 − 0.286 − 2.005 P_Neobalantidium 3 128

MECP2 − 2.059 − 0.864 0.536 − 0.591 B_Dorea 2 118

SMAD4 − 2.460 − 2.206 0.431 1.586 B_Catenibacterium 0 118

IKZF2 − 1.694 − 2.864 − 0.578 − 1.337 P_AlphaPROTO 0 117

ssc-mir-9817 − 1.841 − 2.175 2.358 2.135 B_RFN20 0 116

ZHX2 − 2.028 − 1.124 0.266 − 1.654 B_Desulfovibrio 1 109
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Table 3 List of 47 key regulators revealed by the regulatory impact factors (RIF) analyses and their RIF1 and RIF2 scores, standardized
association to the bacteria (Alpha_B) and protist (Alpha_P) diversity, phenotype of strongest association, pleiotropy, and number of
connections in the PCIT-inferred network (Continued)

Regulator RIF1 RIF2 Alpha_B Alpha_P Top_Association Pleio Conn

ZNF282 − 1.657 − 2.258 0.954 1.573 B_Ruminococcus 0 85

BAZ2B − 2.287 − 0.786 − 1.879 0.484 B_Clostridium 1 76

ssc-mir-29a − 2.067 − 2.748 − 0.568 0.811 B_Lachnospira 2 62

NFATC3 − 2.132 − 2.525 0.270 0.442 B_Desulfovibrio 1 24

ZNF18 − 1.353 − 2.134 − 0.490 − 0.929 P_Neobalantidium 0 18

Fig. 2 Gene co-association sub-network: PCIT-inferred gene co-association sub-network comprising the 47 key regulators identified by RIF
(diamonds) and their first neighbors (ellipses) presenting strong significant correlations (> 0.7). Node color is mapped to the phenotype of the
strongest association: dark blue for bacteria alpha diversity (BACT_Alpha), light blue for other bacteria abundance phenotypes (BACT), dark green
for protist alpha diversity (PROT_Alpha), and light green for other protist abundance phenotypes (PROT). Pink and cyan edges indicate positive
and negative correlations, respectively, and node size indicates the amount of pleiotropy
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cluster closely, which suggest a common directionality
of the additive values, and perhaps a common genetic
control for this groups of taxa. Notwithstanding the fact
that targeting of 16S rRNA variable regions with short-
read sequencing platforms cannot achieve the taxonomic
resolution at the species level, our results add confidence
and suggest the usefulness of the proposed analytical
framework to recover key ecological properties of gut
microbial ecosystem.
The gene co-association network (Supplementary Fig.

1) revealed the identity of predicted target genes and the
higher complexity and polygenic nature of the diversity
and composition of the pig gut microbial ecosystem. It is
worth noting that literature mining confirms the associ-
ation between the pig host-genome and the relative
abundance of six bacterial genus reported by Crespo
et al. 2019 (Supplementary Table 4). Furthermore, our
findings also confirm association of 27 of the 68 genes
recently reported by [36] as linked with the alpha diver-
sity and the relative abundance of member of the swine
gut microbiota (Supplementary Table 5). Remarkably,
PRDM15 was among the genes commonly identify by
[36]. As previously mentioned, PRDM15 was associated
with the highest number of traits (Table 3) and the regu-
lator showing the highest pleotropic value, despite differ-
ences between studies of genetic background, age, diets,
and other environmental factors. Confirmed associations
includes 11 of the 17 QTLs reported by Crespo et al.
2019 (Supplementary Table 4), as well as QTLs reported

by [36] associated with members of Clostridium, Succini-
vibrio, Bacteroides, Prevotella, Blautia, Turicibacter,
Treponema, Mobiluncus, and Oscillibacter genera.
Therefore, our results suggest that in contrast to host
genome-microbiota association performed in humans
and mouse [37–39], several QTLs reported in swine can
be replicated which open the possibility to identify gen-
etic markers and candidate genes that can be incorpo-
rated in genetic breeding program to improve microbial
traits.
We also noted that the list of target-genes contains a

total of 200 candidate genes previously reported as
linked to microbial traits in mouse or human studies
(Supplementary Table 6). Among them, it is worth
highlighting the following: (1) SLIT3, reported in the UK
Twins Dataset [40] as associated with unclassified Clos-
tridiaceae [41], linked to MetaCyc pathways involved in
plant-derived steroid degradation, and whose expression
is upregulated in colon crypts during the conventionali-
zation of germ-free mice [42]; (2) SLC39A8, a gene with
a pleiotropic missense variant related with Crohn’s dis-
ease and the composition of human gut microbiome
[43]; and (3) NOS1, for which a pleiotropic association
with body fatness and gut microbiota composition in
mice had been shown [44]. We also identified other
genes that had been shown to be related to β-diversity
(CSMD1, ZFAT, FRMPD1, CLEC16A, IL1R2, BANK1,
PRKAG2, LHFPL3, ST5, and NXN) and gut bacterial
abundance (TOX3, NAPG, DLEC1, COL19A, DDM, and

Fig. 3 Microbiome diversity and pleiotropy. Surface plot of the 3-way relationship between the SNP association with alpha diversity in protists
(width), bacteria (depth) and its pleiotropy (height), measured as the number of significantly associated (adjusted P value < 0.05) protist and
bacteria genera
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IFNAR1) in mice [45–47]. Genes reported by Allison
et al. (2019) [48] as differentially expressed in primary
human colonic epithelial cells (NEBL, ASAP3, ABLIM1,
CUEDC2, PRRC2C, DENND1A, LAMC1, MAL2, ITGB1,
CAST, A2ML1, IL7R, PCDH7, NFATC2IP, SORCS2, and
DNM3) were also found in our study. Furthermore,
genes linked to the functional profiles of the human gut
ecosystem (SORCS2, LRRC32, and ARAP1) were among
the predicted target genes in our network. As previously
mentioned, SORCS2 was reported as linked to a plant-
derived steroid degradation pathway. Meanwhile, genetic
variants located in ARAP1 were linked to the bile acid
metabolism, and LRRC32 was associated to the profile of
‘cell–cell signaling’ GO term [41]. It should be noted
that many of these genes, including the key regulators,
would have been missed by traditional single-trait
GWAS which highly the usefulness of the proposed ana-
lytical pipeline to identify novels regulators and candi-
date genes linked with diversity and the composition of
pig gut microbial ecosystem.

Host-genome markers associated with butyrate
producing bacteria and piglets body weight
The identification of host-genetic markers linked with
the relative abundance of butyrate producer bacteria
such as Faecalibacterium, Dorea, Blautia, Butyrococcus,
and Coprococcus (Table 2) prompted us to investigate
whether these associations can be expanded in terms of
overall pig’s wellbeing, and using the piglets’ body weight
as the proxy for health and productivity. Butyrate is an
important energy source for intestinal epithelial with
anti-inflammatory potential that influences cell differen-
tiation and strengthens the epithelial defense barrier [49,
50]. In fact, the beneficial effect of butyrate on swine
growth and intestinal integrity have been documented
[51, 52]. Therefore, we focused on the identification of
SNPs with pleiotropic effect associated with the relative
abundance of butyrate producer bacteria and host per-
formance. After correcting for the systematic effects of
sex (2 levels) and batch (7 levels), we found one signifi-
cant SNP located at 96,004,482 bp of SSC2 (rs81361511)
linked with the relative abundance of members of Butyr-
icicoccus (P = 2.43E− 15) and piglets body weight (P =
0.026) (Table 4), as well as two SNPs associated with the
relative abundance of Coprococcus (rs81344777, P =
1.26E− 07) and Faecalibacterium (rs81288412, P = 1.07E
− 17) that were suggestively associated with piglets body
weight. It is noteworthy to highlight that in these three
cases, the allelic effects were in the same direction: the
same allele affects the relative abundance of Butyricicoc-
cus, Coprococcus, Faecalibacterium and piglets body
weight. In agreement with [36], our findings suggest the
existence of host-genetic variants jointly associated with
the relative abundance of beneficial bacterial and host

performance. However, larger studies including experi-
mental validations and alternative source of information
at host (additional phenotypic traits) and microbial
(whole-metagenome, meta-transcriptomics) level are
needed to fully characterize the role of the host genome-
associated microbial communities in swine production
performance, welfare, and health.

Host-genome microbial interactions are partially
modulated by the host immune system
The functional analysis from the list of regulators reveals
overrepresentation of immune-related pathways. As
many as 64% (16 out of 25) of the pathways reported as
overrepresented by IPA relate to the host immune re-
sponse (Table 5). Of note, this list includes pathways re-
lated with the bidirectional host-microbial crosstalk such
as ERK/MAPK signaling [53], Th1 and Th2 activation
pathway [54], TGF-β signaling [55], Wnt/β-catenin sig-
naling [56], glucocorticoid receptor signaling [57], VDR/
RXR activation [58], IL-22 signaling [59], and aryl hydro-
carbon receptor [60].
The list of regulator includes other TFs-related with

host immune system such as TFE3, NCOR1, SMAD4,
NFE2L2, KLF7, NFATC3, TCF4, IRF2, and IKZF2. TFE3
cooperates with TFEB in the regulation of the innate im-
mune response and macrophages activation [61], while
NCOR1 plays an essential role controlling positive and
negative selection of thymocytes during T cell develop-
ment [62]. SMAD4 regulates IL-2 expression [63] and is
essential for T cell proliferation [64]. Interestingly, ac-
cording to String database [65], experimental data con-
firm the protein-by-protein interaction between SMAD4
and previously mentioned regulators RUNX2, SOX9,
TEF3, and NCOR1. Finally, the list of regulators also in-
cludes TFs related to biological process like, inflamma-
tory response (NFE2L2, KLF7) [66, 67], hematopoiesis
(NFATC3 and IKZF2), cell-mediated immune response
(IKZF2, IRF2, NCOR1, NFATC3, RUNX2, STAT1,
TCF4), humoral immune response (IRF2, NFATC3,
RUNX2, STAT1, TCF4), and the modulation of human
B-cell differentiation (KLF14, KLF7, MTA3, STAT1)
[68]. Therefore, in concordance with recent findings in
human, mice, and pigs [5, 39, 69], our confirm that host-

Table 4 SNPs with pleiotropic effect associated with the relative
abundance of butyrate producer bacteria and piglets body
weight

SNP Associated
microbial trait

Body weight (60 days)

Effect P value

rs81361511 Butyricicoccus 1.014 0.026

rs81344777 Coprococcus 0.789 0.078

rs81288412 Faecalibacterium − 0.787 0.082
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genome microbial interactions are mainly shaping by the
host immune system.

Conclusions
In the present study, we built and explored a SNP-gene
co-association network comprising 3561 genes related to
the diversity and abundance of 31 bacterial and 6 com-
mensal protist genera in pigs gut microbiota. Besides
identifying genes associated with alpha diversity in both
bacteria and protist, our analytical approach takes ad-
vantage of the genetic contribution to related microbial
traits and revealed genetic variants with pleiotropic ef-
fects on pig gut microbiota profile. We also identify
SNPs with pleiotropic effect associated with the relative
abundance of butyrate producer bacteria (Faecalibacter-
ium, Butyrococcus, and Coprococcus) and host perform-
ance. Placing emphasis on regulatory elements, a total of
47 regulators that enriched for immune-related pathways
were identified. Among them, five regulators resulted
prominent within the network: PRDM15, STAT1, ssc-
mir-371, SOX9, and RUNX2. The list of predicted targets

included 200 candidate genes previously reported as as-
sociated with microbiota profile in mice and human,
such as SLIT3, SLC39A8, NOS1, IL1R2, DAB1, TOX3,
SPP1, THSD7B, ELF2, PIANP, A2ML1, and IFNAR1.
Taken together, our results highlight the value of the
proposed analytical pipeline to exploit pleiotropy and
the crosstalk between bacteria and protists as significant
contributors to host-microbiome interactions.
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Osteoarthritis pathway 3.13 0.019 RUNX2,SMAD4,SOX9,TCF4

TGF-β signaling 3.07 0.031 RUNX2,SMAD4,TFE3

Role of osteoblasts, osteoclasts, and chondrocytes in rheumatoid arthritis 3.07 0.018 NFATC3,RUNX2,SMAD4,TCF4

Glucocorticoid receptor signaling 2.4 0.012 NCOR1,NFATC3,SMAD4,STAT1

VDR/RXR activation 2 0.022 NCOR1,RUNX2

BMP signaling pathway 1.93 0.024 RUNX2,SMAD4

Colorectal cancer metastasis signaling 1.89 0.012 SMAD4,STAT1,TCF4

Regulation of IL-2 expression in activated and anergic T lymphocytes 1.89 0.023 NFATC3,SMAD4

Senescencepathway 1.79 0.011 ELF2,NFATC3,SMAD4

Mouse embryonic stem cell pluripotency 1.77 0.019 SMAD4,TCF4
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Neuroinflammation signaling pathway 1.69 0.010 NFATC3,NFE2L2,STAT1

Th1 pathway 1.64 0.016 NFATC3,STAT1

Human embryonic stem cell pluripotency 1.55 0.015 SMAD4,TCF4
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Protein kinase A signaling 1.38 0.008 NFATC3,SMAD4,TCF4

Th1 and Th2 activation pathway 1.36 0.013 NFATC3,STAT1
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T cell exhaustion signaling pathway 1.34 0.011 NFATC3,STAT1

IL-22 signaling 1.34 0.042 STAT1

Role of JAK family kinases in IL-6-type cytokine signaling 1.32 0.040 STAT1

ERK/MAPK signaling 1.3 0.010 ELF2,STAT1

Hepatic fibrosis/hepatic stellate cell activation 1.3 0.011 SMAD4,STAT1
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