58 research outputs found

    Quantifying eco-evolutionary contributions to trait divergence in spatially structured systems

    Get PDF
    Ecological and evolutionary processes can occur at similar time scales and, hence, influence one another. There has been much progress in developing metrics that quantify contributions of ecological and evolutionary components to trait change over time. However, many empirical evolutionary ecology studies document trait differentiation among populations structured in space. In both time and space, the observed differentiation in trait values among populations and communities can be the result of interactions between nonevolutionary (phenotypic plasticity, changes in the relative abundance of species) and evolutionary (genetic differentiation among populations) processes. However, the tools developed so far to quantify ecological and evolutionary contributions to trait changes are implicitly addressing temporal dynamics because they require directionality of change from an ancestral to a derived state. Identifying directionality from one site to another in spatial studies of eco-evolutionary dynamics is not always possible and often not meaningful. We suggest three modifications to existing partitioning metrics so they allow quantifying ecological and evolutionary contributions to changes in population and community trait values across spatial locations in landscapes. Applying these spatially modified metrics to published empirical examples shows how these metrics can be used to generate new empirical insights and to facilitate future comparative analyses. The possibility of applying eco-evolutionary partitioning metrics to populations and communities in natural landscapes is critical as it will broaden our capacity to quantify eco-evolutionary interactions as they occur in nature

    Quantifying eco-evolutionary contributions to trait divergence in spatially structured systems

    Full text link
    Ecological and evolutionary processes can occur at similar time scales and, hence, influence one another. There has been much progress in developing metrics that quantify contributions of ecological and evolutionary components to trait change over time. However, many empirical evolutionary ecology studies document trait differentiation among populations structured in space. In both time and space, the observed differentiation in trait values among populations and communities can be the result of interactions between nonevolutionary (phenotypic plasticity, changes in the relative abundance of species) and evolutionary (genetic differentiation among populations) processes. However, the tools developed so far to quantify ecological and evolutionary contributions to trait changes are implicitly addressing temporal dynamics because they require directionality of change from an ancestral to a derived state. Identifying directionality from one site to another in spatial studies of eco-evolutionary dynamics is not always possible and often not meaningful. We suggest three modifications to existing partitioning metrics so they allow quantifying ecological and evolutionary contributions to changes in population and community trait values across spatial locations in landscapes. Applying these spatially modified metrics to published empirical examples shows how these metrics can be used to generate new empirical insights and to facilitate future comparative analyses. The possibility of applying eco-evolutionary partitioning metrics to populations and communities in natural landscapes is critical as it will broaden our capacity to quantify eco-evolutionary interactions as they occur in nature

    The shape of density dependence and the relationship between population growth, intraspecific competition and equilibrium population density

    Get PDF
    The logistic growth model is one of the most frequently used formalizations of density dependence affecting population growth, persistence and evolution. Ecological and evolutionary theory, and applications to understand population change over time often include this model. However, the assumptions and limitations of this popular model are often not well appreciated. Here, we briefly review past use of the logistic growth model and highlight limitations by deriving population growth models from underlying consumer–resource dynamics. We show that the logistic equation likely is not applicable to many biological systems. Rather, density‐regulation functions are usually non‐linear and may exhibit convex or concave curvatures depending on the biology of resources and consumers. In simple cases, the dynamics can be fully described by the Schoener model. More complex consumer dynamics show similarities to a Maynard Smith–Slatkin model. We show how population‐level parameters, such as intrinsic rates of increase and equilibrium population densities are not independent, as often assumed. Rather, they are functions of the same underlying parameters. The commonly assumed positive relationship between equilibrium population density and competitive ability is typically invalid. We propose simple relationships between intrinsic rates of increase and equilibrium population densities that capture the essence of different consumer–resource systems. Relating population level models to underlying mechanisms allows us to discuss applications to evolutionary outcomes and how these models depend on environmental conditions, like temperature via metabolic scaling. Finally, we use time‐series from microbial food chains to fit population growth models as a test case for our theoretical predictions. Our results show that density‐regulation functions need to be chosen carefully as their shapes will depend on the study system's biology. Importantly, we provide a mechanistic understanding of relationships between model parameters, which has implications for theory and for formulating biologically sound and empirically testable predictions

    Host–parasite dynamics shaped by temperature and genotype: Quantifying the role of underlying vital rates

    Get PDF
    1. Global warming challenges the persistence of local populations, not only through heat-induced stress, but also through indirect biotic changes. We study the interactive effects of temperature, competition and parasitism in the water flea Daphnia magna. 2. We carried out a common garden experiment monitoring the dynamics of Daphnia populations along a temperature gradient. Halfway through the experiment, all populations became infected with the ectoparasite Amoebidium parasiticum, enabling us to study the interactive effects of temperature and parasite dynamics. We combined Integral Projection Models with epidemiological models, parameterized using the experimental data on the performance of individuals within dynamic populations. This enabled us to quantify the contribution of different vital rates and epidemiological parameters to population fitness across temperatures and Daphnia clones originating from two latitudes. 3. Interactions between temperature and parasitism shaped competition, where Belgian clones performed better under infection than Norwegian clones. Infected Daphnia populations performed better at higher than at lower temperatures, mainly due to an increased host capability of reducing parasite loads. Temperature strongly affected individual vital rates, but effects largely cancelled out on a population-level. In contrast, parasitism strongly reduced fitness through consistent negative effects on all vital rates. As a result, temperature-mediated parasitism was more important than the direct effects of temperature in shaping population dynamics. Both the outcome of the competition treatments and the observed extinction patterns support our modelling results. 4. Our study highlights that shifts in biotic interactions can be equally or more important for responses to warming than direct physiological effects of warming, emphasizing that we need to include such interactions in our studies to predict the competitive ability of natural populations experiencing global warming

    Host–parasite dynamics shaped by temperature and genotype : quantifying the role of underlying vital rates

    Get PDF
    Global warming challenges the persistence of local populations, not only through heat-induced stress, but also through indirect biotic changes. We study the interactive effects of temperature, competition and parasitism in the water flea Daphnia magna. We carried out a common garden experiment monitoring the dynamics of Daphnia populations along a temperature gradient. Halfway through the experiment, all populations became infected with the ectoparasite Amoebidium parasiticum, enabling us to study the interactive effects of temperature and parasite dynamics. We combined Integral Projection Models with epidemiological models, parameterized using the experimental data on the performance of individuals within dynamic populations. This enabled us to quantify the contribution of different vital rates and epidemiological parameters to population fitness across temperatures and Daphnia clones originating from two latitudes. Interactions between temperature and parasitism shaped competition, where Belgian clones performed better under infection than Norwegian clones. Infected Daphnia populations performed better at higher than at lower temperatures, mainly due to an increased host capability of reducing parasite loads. Temperature strongly affected individual vital rates, but effects largely cancelled out on a population-level. In contrast, parasitism strongly reduced fitness through consistent negative effects on all vital rates. As a result, temperature-mediated parasitism was more important than the direct effects of temperature in shaping population dynamics. Both the outcome of the competition treatments and the observed extinction patterns support our modelling results. Our study highlights that shifts in biotic interactions can be equally or more important for responses to warming than direct physiological effects of warming, emphasizing that we need to include such interactions in our studies to predict the competitive ability of natural populations experiencing global warming.publishedVersio

    Experimentally decomposing phytoplankton community change into ecological and evolutionary contributions

    Get PDF
    1. Shifts in microbial communities and their functioning in response to environmental change result from contemporary interspecific and intraspecific diversity changes. Interspecific changes are driven by ecological shifts in species composition, while intraspecific changes are here assumed to be dominated by evolutionary shifts in genotype frequency. Quantifying the relative contributions of interspecific and intraspecific diversity shifts to community change thus addresses the essential, yet understudied question as to how important ecological and evolutionary contributions are to total community changes. This debate is to date practically constrained by (a) a lack of studies integrating across organizational levels and (b) a mismatch between data requirements of existing partitioning metrics and the feasibility to collect such data, especially in microscopic organisms like phytoplankton.2. We experimentally assessed the relative ecological and evolutionary contributions to total phytoplankton community changes using a new design and validated its functionality by comparisons to established partitioning metrics. We used a community of coexisting Emiliania huxleyi and Chaetoceros affinis with initially nine genotypes each. First, we exposed the community to elevated CO2 concentration for 80 days (similar to 50 generations) to induce interspecific and intraspecific diversity changes and a total abundance change. Second, we independently manipulated the induced interspecific and intraspecific diversity changes in an assay to quantify the corresponding ecological and evolutionary contributions to the total change. Third, we applied existing partitioning metrics to our experimental data and compared the outcomes.3. Total phytoplankton abundance declined to one-fifth in the high CO2 exposed community compared to ambient conditions. Consistently across all applied partitioning metrics, the abundance decline could predominantly be explained by ecological shifts and to a low extent by evolutionary changes.4. We discuss potential consequences of the observed community changes on ecosystem functioning. Furthermore, we explain that the low evolutionary contributions likely resulted of intraspecific diversity changes that occurred irrespectively of CO2. We discuss how the assay could be upscaled to more realistic settings, including more species and drivers. Overall, the presented calculations of eco-evolutionary contributions to phytoplankton community changes constitute another important step towards understanding future phytoplankton shifts, and eco-evolutionary dynamics in general.</p

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km &lt;sup&gt;2&lt;/sup&gt; resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km &lt;sup&gt;2&lt;/sup&gt; pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2&nbsp;m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0\u20135 and 5\u201315&nbsp;cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10\ub0C (mean&nbsp;=&nbsp;3.0&nbsp;\ub1&nbsp;2.1\ub0C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6&nbsp;\ub1&nbsp;2.3\ub0C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler ( 120.7&nbsp;\ub1&nbsp;2.3\ub0C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
    corecore