1,133 research outputs found

    Subjective Perception of Time and a Progressive Present Moment: The Neurobiological Key to Unlocking Consciousness

    Get PDF
    The conclusion of physics, within both a historical and more recent context, that an objectively progressive time and present moment are derivative notions without actual physical foundation in nature, illustrate that these perceived chronological features originate from subjective conscious experience and the neurobiological processes underlying it. Using this conclusion as a stepping stone, it is posited that the phenomena of an in-built subjective conception of a progressive present moment in time and that of conscious awareness are actually one and the same thing, and as such, are also the outcome of the same neurobiological processes. A possible explanation as to how this might be achieved by the brain through employing the neuronal induced nonconscious cognitive manipulation of a small interval of time is proposed. The CIP phenomenon, elucidated within the context of this study is also then discussed

    A study of the compact group of galaxies Shahbazian 4

    Get PDF
    The radial velocities of members of Shakhbazian 4 are determined. It is found that the dispersion of the radial velocities is 440 km/s. The apparent and absolute magnitudes of galaxies in V color are obtained. It is found that the M/L ratio of the group is about 220 solar mass/solar luminosity. The crossing time for the Shakhbazian 4 group is equal to 47 Myr

    High-Resolution Mid-Infrared Morphology of Cygnus A

    Get PDF
    We present subarcsecond resolution mid-infrared images at 10.8 and 18.2 microns of Cygnus A. These images were obtained with the University of Florida mid-IR camera/spectrometer OSCIR at the Keck II 10-m telescope. Our data show extended mid-IR emission primarily to the east of the nucleus with a possible western extension detected after image deconvolution. This extended emission is closely aligned with the bi-conical structure observed at optical and near-IR wavelengths by the HST. This emission is consistent with dust heated from the central engine of Cygnus A. We also marginally detect large-scale low level emission extending > 1.5 kpc from the nucleus which may be caused by in-situ star formation, line emission, and/or PAH contamination within the bandpass of our wide N-band filter.Comment: 20 pages, 8 figures, accepted for publication in the Astrophysical Journa

    First optical light from the supernova remnant G 17.4-2.3

    Get PDF
    Deep optical CCD images of the supernova remnant G 17.4-2.3 were obtained and faint emission has been discovered. The images, taken in the emission lines of Halpha+[N II], [S II] and [O III], reveal filamentary structures in the east, south-east area, while diffuse emission in the south and central regions of the remnant is also present. The radio emission in the same area is found to be well correlated with the brightest optical filament. The flux calibrated images suggest that the optical filamentary emission originates from shock-heated gas ([S II]/Halpha > 0.4), while the diffuse emission seems to originate from an HII region ([S II]/Halpha < 0.3). Furthermore, deep long-slit spectra were taken at the bright [O III] filament and clearly show that the emission originates from shock heated gas. The [O III] flux suggests shock velocities into the interstellar "clouds" greater than 100 km/s, while the [S II] 6716/6731 ratio indicates electron densities ~240 cm^{-3}. Finally, the Halpha emission has been measured to be between 7 to 20 x 10^{-17} erg s^{-1} cm^{-2} arcsec^{-2}.Comment: 6 pages, 5 figures, accepted for publication in A&

    Automatic detection of arcs and arclets formed by gravitational lensing

    Full text link
    We present an algorithm developed particularly to detect gravitationally lensed arcs in clusters of galaxies. This algorithm is suited for automated surveys as well as individual arc detections. New methods are used for image smoothing and source detection. The smoothing is performed by so-called anisotropic diffusion, which maintains the shape of the arcs and does not disperse them. The algorithm is much more efficient in detecting arcs than other source finding algorithms and the detection by eye.Comment: A&A in press, 12 pages, 16 figure

    Perturbative reconstruction of a gravitational lens: when mass does not follow light

    Full text link
    The structure and potential of a complex gravitational lens is reconstructed using the perturbative method presented in Alard 2007, MNRAS, 382L, 58; Alard 2008, MNRAS, 388, 375. This lens is composed of 6 galaxies belonging to a small group. The lens inversion is reduced to the problem of reconstructing non-degenerate quantities: the 2 fields of the perturbative theory of strong gravitational lenses. Since in the perturbative theory the circular source solution is analytical, the general properties of the perturbative solution can be inferred directly from the data. As a consequence, the reconstruction of the perturbative fields is not affected by degeneracy, and finding the best solution is only a matter of numerical refinement. The local shape of the potential and density of the lens are inferred from the perturbative solution, revealing the existence of an independent dark component that does not follow light. The most likely explanation is that the particular shape of the dark halo is due to the merging of cold dark matter halos. This is a new result illustrating the structure of dark halos at the scale of galaxies.Comment: Final version (Astronomy and Astrophysics in press

    Searching (the) FIRST radio arcs near ACO clusters

    Get PDF
    Gravitational lensing (GL) of distant radio sources by galaxy clusters should produce radio arc(let)s. We extracted radio sources from the FIRST survey near Abell cluster cores and found their radio position angles to be uniformly distributed with respect to the cluster centres. This result holds even when we restrict the sample to the richest or most centrally condensed clusters, and to sources with high S/N and large axial ratio. Our failure to detect GL with statistical methods may be due to poor cluster centre positions. We did not find convincing candidates for arcs either. Our result agrees with theoretical estimates predicting that surveys much deeper than FIRST are required to detect the effect. This is in apparent conflict with the detection of such an effect claimed by Bagchi & Kapahi (1995).Comment: 6 pages; 8 figures and 1 style file are included; to appear in Proc. "Observational Cosmology with the New Radio Surveys", eds. M. Bremer, N. Jackson & I. Perez-Fournon, Kluwer Acad. Pres
    corecore