143 research outputs found

    Same but different? Mobile technology adoption in China

    Get PDF
    Purpose This paper seeks to answer two research questions which are β€œWhat are key factors which influence Chinese to adopt mobile technology?” and β€œDo these key factors differ from factors which are identified from Western context?” Design/methodology The findings from a pilot study with 45 in-depth interviews are used to develop questionnaires and test across 800 residents from the three research cities. The data were analyzed by Structural Equation Modelling together with Multi-group Analysis. Findings Our data suggest eight important concepts, i.e. utilitarian expectation, hedonic expectation, status gains, status loss avoidance, normative influence, external influence, cost, and quality concern, are influential factors affecting users’ intentions to adopt 3G mobile technology. Differences are found between the samples in the three research cities in the effect of hedonic expectation, status gains, status loss avoidance, and normative influence on mobile technology adoption intention. Research limitations/implications: As the stability of intentions may change over time, only measuring intentions might be inadequate in predicting actual adoption behaviors. However, the focus on potential users is thought to be appropriate, given that the development of 3G is still in its infancy in China. Originality/value Previous research into Information Technology (IT) adoption among Chinese users has not paid attention to regional diversity. Some research considered China as a large single market and some was conducted in only one province or one city. Culturally, China is a heterogeneous country

    Immunogenicity and Efficacy of Flagellin-Fused Vaccine Candidates Targeting 2009 Pandemic H1N1 Influenza in Mice

    Get PDF
    We have previously demonstrated that the globular head of the hemagglutinin (HA) antigen fused to flagellin of Salmonella typhimurium fljB (STF2, a TLR5 ligand) elicits protective immunity to H1N1 and H5N1 lethal influenza infections in mice (Song et al., 2008, PLoS ONE 3, e2257; Song et al., 2009, Vaccine 27, 5875–5888). These fusion proteins can be efficiently and economically manufactured in E. coli fermentation systems as next generation pandemic and seasonal influenza vaccines. Here we report immunogenicity and efficacy results of three vaccine candidates in which the HA globular head of A/California/07/2009 (H1N1) was fused to STF2 at the C-terminus (STF2.HA1), in replace of domain 3 (STF2R3.HA1), or in both positions (STF2R3.2xHA1). For all three vaccines, two subcutaneous immunizations of BALB/c mice with doses of either 0.3 or 3 Β΅g elicit robust neutralizing (HAI) antibodies, that lead to >β€Š=β€Š2 Log10 unit reduction in day 4 lung virus titer and full protection against a lethal A/California/04/2009 challenge. Vaccination with doses as low as 0.03 Β΅g results in partial to full protection. Each candidate, particularly the STF2R3.HA1 and STF2R3.2xHA1 candidates, elicits robust neutralizing antibody responses that last for at least 8 months. The STF2R3.HA1 candidate, which was intermediately protective in the challenge models, is more immunogenic than the H1N1 components of two commercially available trivalent inactivated influenza vaccines (TIVs) in mice. Taken together, the results demonstrate that all three vaccine candidates are highly immunogenic and efficacious in mice, and that the STF2R3.2xHA1 format is the most effective candidate vaccine format

    Efficacious Recombinant Influenza Vaccines Produced by High Yield Bacterial Expression: A Solution to Global Pandemic and Seasonal Needs

    Get PDF
    It is known that physical linkage of TLR ligands and vaccine antigens significantly enhances the immunopotency of the linked antigens. We have used this approach to generate novel influenza vaccines that fuse the globular head domain of the protective hemagglutinin (HA) antigen with the potent TLR5 ligand, flagellin. These fusion proteins are efficiently expressed in standard E. coli fermentation systems and the HA moiety can be faithfully refolded to take on the native conformation of the globular head. In mouse models of influenza infection, the vaccines elicit robust antibody responses that mitigate disease and protect mice from lethal challenge. These immunologically potent vaccines can be efficiently manufactured to support pandemic response, pre-pandemic and seasonal vaccines

    Genome-Wide Association Analysis of Soluble ICAM-1 Concentration Reveals Novel Associations at the NFKBIK, PNPLA3, RELA, and SH2B3 Loci

    Get PDF
    Soluble ICAM-1 (sICAM-1) is an endothelium-derived inflammatory marker that has been associated with diverse conditions such as myocardial infarction, diabetes, stroke, and malaria. Despite evidence for a heritable component to sICAM-1 levels, few genetic loci have been identified so far. To comprehensively address this issue, we performed a genome-wide association analysis of sICAM-1 concentration in 22,435 apparently healthy women from the Women's Genome Health Study. While our results confirm the previously reported associations at the ABO and ICAM1 loci, four novel associations were identified in the vicinity of NFKBIK (rs3136642, Pβ€Š=β€Š5.4Γ—10βˆ’9), PNPLA3 (rs738409, Pβ€Š=β€Š5.8Γ—10βˆ’9), RELA (rs1049728, Pβ€Š=β€Š2.7Γ—10βˆ’16), and SH2B3 (rs3184504, Pβ€Š=β€Š2.9Γ—10βˆ’17). Two loci, NFKBIB and RELA, are involved in NFKB signaling pathway; PNPLA3 is known for its association with fatty liver disease; and SH3B2 has been associated with a multitude of traits and disease including myocardial infarction. These associations provide insights into the genetic regulation of sICAM-1 levels and implicate these loci in the regulation of endothelial function

    TRAF6 and IRF7 Control HIV Replication in Macrophages

    Get PDF
    The innate immune system recognizes virus infection and evokes antiviral responses which include producing type I interferons (IFNs). The induction of IFN provides a crucial mechanism of antiviral defense by upregulating interferon-stimulated genes (ISGs) that restrict viral replication. ISGs inhibit the replication of many viruses by acting at different steps of their viral cycle. Specifically, IFN treatment prior to in vitro human immunodeficiency virus (HIV) infection stops or significantly delays HIV-1 production indicating that potent inhibitory factors are generated. We report that HIV-1 infection of primary human macrophages decreases tumor necrosis factor receptor-associated factor 6 (TRAF6) and virus-induced signaling adaptor (VISA) expression, which are both components of the IFN signaling pathway controlling viral replication. Knocking down the expression of TRAF6 in macrophages increased HIV-1 replication and augmented the expression of IRF7 but not IRF3. Suppressing VISA had no impact on viral replication. Overexpression of IRF7 resulted in enhanced viral replication while knocking down IRF7 expression in macrophages significantly reduced viral output. These findings are the first demonstration that TRAF6 can regulate HIV-1 production and furthermore that expression of IRF7 promotes HIV-1 replication

    Gut Microbiome Dysbiosis in Antibiotic-Treated COVID-19 Patients is Associated with Microbial Translocation and Bacteremia

    Get PDF
    Although microbial populations in the gut microbiome are associated with COVID-19 severity, a causal impact on patient health has not been established. Here we provide evidence that gut microbiome dysbiosis is associated with translocation of bacteria into the blood during COVID-19, causing life-threatening secondary infections. We first demonstrate SARS-CoV-2 infection induces gut microbiome dysbiosis in mice, which correlated with alterations to Paneth cells and goblet cells, and markers of barrier permeability. Samples collected from 96 COVID-19 patients at two different clinical sites also revealed substantial gut microbiome dysbiosis, including blooms of opportunistic pathogenic bacterial genera known to include antimicrobial-resistant species. Analysis of blood culture results testing for secondary microbial bloodstream infections with paired microbiome data indicates that bacteria may translocate from the gut into the systemic circulation of COVID-19 patients. These results are consistent with a direct role for gut microbiome dysbiosis in enabling dangerous secondary infections during COVID-19
    • …
    corecore