35 research outputs found

    The Properties of Brightest Cluster Galaxies in X-Ray Selected Clusters

    Get PDF
    We present the K-band Hubble diagram for 162 brightest cluster galaxies (BCGs) in X-ray selected clusters, 0.01<z<0.83. The sample incorporates that of Burke, Collins, & Mann (2000) and includes additional infrared data from the 2MASS extended source catalogue. We show that below z=0.1 the BCGs show no correlation with their environment, however, above z=0.1 BCGs in more X-ray luminous clusters are more uniform in their photometric properties. This suggests that there may be two populations of BCGs which have different evolutionary histories.Comment: 2 pages, to appear in the proceedings of the Sesto 2001 conference on tracing cosmic evolution with galaxy cluster

    A feeding guild indicator to assess environmental change impacts on marine ecosystem structure and functioning.

    Get PDF
    Integrating food web indicators into ecological status assessments is central to developing effective management measures that can improve degraded ecosystems. This is because they can reveal how ecosystems respond to environmental change that cannot be inferred from studying habitat, species or assemblages alone. However, the substantial investment required to monitor food webs (e.g. via stomach contents analysis) and the lack of internationally agreed approaches to assessing them has hampered their development. Inventories of trophic interactions have been collated world-wide and across biomes, and can be applied to infer food web structure and energy flow. Here, we compile a new marine dataset containing 8,092 unique predator–prey interactions from 415,294 fish stomachs. We demonstrate how feeding guilds (i.e. groupings based on diet and life stage) could be defined systematically and in a way that is conducive to their application internationally across ecosystems; and apply them to the North Sea fish assemblage to demonstrate their responsiveness to anthropogenic pressures. We found evidence for seven distinct feeding guilds. Differences between guilds were related to predator size, which positively correlated with piscivory, phylogeny, with multiple size classes of a species often in the same guild, and habitat, as pelagic, benthic and shallow-coastal foraging was apparent. Guild biomasses were largely consistent through time at the North Sea-level and spatially aggregated at the regional level with change relating to changes in resource availability, temperature, fishing and the biomass of other guilds. This suggests that fish biomass was partitioned across broad feeding and environmental niches, and changes over time were governed partly by guild carrying capacities, but also by a combination of covariates with contrasting patterns of change. Management of the North Sea ecosystem could therefore be adaptive and focused towards specific guilds and pressures in a given area. Synthesis and applications. We propose a food web indicator which has been explicitly called for to inform policy via food web status assessment as part of the European Union's Marine Strategy Framework Directive and the indicator toolkit supporting The Convention for the Protection of the Marine Environment of the North-East Atlantic (the ‘OSPAR Convention’)

    A “one pot” tool for characterizing solution-phase and gas-phase photochemical reactions by electrospray mass spectrometry

    Get PDF
    The characterization of new photochemical pathways is important to progress the understanding of emerging areas of light-triggered inorganic and organic chemistry. In this context, the development of platforms to perform routine characterization of photochemical reactions remains an important goal for photochemists. Here, we demonstrate a new instrument that can be used to characterize both solution-phase and gas-phase photochemical reactions through electrospray ionization mass spectrometry (ESI-MS). The gas-phase photochemistry is studied by novel laser‐interfaced mass spectrometry (LIMS), where the molecular species of interest is introduced to the gas-phase by ESI, mass-selected and then subjected to laser photodissociation in the ion-trap. On-line solution-phase photochemistry is initiated by LEDs prior to ESI-MS in the same instrument with ESI-MS again being used to monitor photoproducts. Two ruthenium metal carbonyls, [Ru(η5-C5H5)(PPh3)2CO ][PF6] and [Ru(η5-C5H5)(dppe)CO][PF6] (dppe = 1,2-bis(diphenylphosphino)ethane) are studied using this methodology. We show that the gas-phase photofragmentation pathways observed for the ruthenium complexes via LIMS (i.e. loss of CO + PPh3 ligands from Ru(η5-C5H5)(PPh3)2CO ]+ and loss of just CO from [Ru(η5-C5H5)(dppe)CO]+, mirror the solution-phase photochemistry. The advantages of performing the gas-phase and solution-phase photochemical characterizations in a single instrument are discussed

    Using ecological models to assess ecosystem status in support of the European Marine Strategy Framework Directive

    Get PDF
    © 2015 The Authors. Published by Elsevier Ltd. The European Union's Marine Strategy Framework Directive (MSFD) seeks to achieve, for all European seas, "Good Environmental Status" (GEnS), by 2020. Ecological models are currently one of the strongest approaches used to predicting and understanding the consequences of anthropogenic and climate-driven changes in the natural environment. We assess the most commonly used capabilities of the modelling community to provide information about indicators outlined in the MSFD, particularly on biodiversity, food webs, non-indigenous species and seafloor integrity descriptors. We built a catalogue of models and their derived indicators to assess which models were able to demonstrate: (1) the linkages between indicators and ecosystem structure and function and (2) the impact of pressures on ecosystem state through indicators. Our survey identified 44 ecological models being implemented in Europe, with a high prevalence of those that focus on links between hydrodynamics and biogeochemistry, followed by end-to-end, species distribution/habitat suitability, bio-opt ical (remote sensing) and multispecies models. Approximately 200 indicators could be derived from these models, the majority of which were biomass and physical/hydrological/chemical indicators. Biodiversity and food webs descriptors, with ∼49% and ∼43% respectively, were better addressed in the reviewed modelling approaches than the non-indigenous species (0.3%) and sea floor integrity (∼8%) descriptors. Out of 12 criteria and 21 MSFD indicators relevant to the abovementioned descriptors, currently only three indicators were not addressed by the 44 models reviewed. Modelling approaches showed also the potential to inform on the complex, integrative ecosystem dimensions while addressing ecosystem fundamental properties, such as interactions between structural components and ecosystems services provided, despite the fact that they are not part of the MSFD indicators set. The cataloguing of models and their derived indicators presented in this study, aim at helping the planning and integration of policies like the MSFD which require the assessment of all European Seas in relation to their ecosystem status and pressures associated and the establishment of environmental targets (through the use of indicators) to achieve GEnS by 2020

    A Review of the Tools Used for Marine Monitoring in the UK: Combining Historic and Contemporary Methods with Modeling and Socioeconomics to Fulfill Legislative Needs and Scientific Ambitions

    Get PDF
    Marine environmental monitoring is undertaken to provide evidence that environmental management targets are being met. Moreover, monitoring also provides context to marine science and over the last century has allowed development of a critical scientific understanding of the marine environment and the impacts that humans are having on it. The seas around the UK are currently monitored by targeted, impact-driven, programmes (e.g., fishery or pollution based monitoring) often using traditional techniques, many of which have not changed significantly since the early 1900s. The advent of a new wave of automated technology, in combination with changing political and economic circumstances, means that there is currently a strong drive to move toward a more refined, efficient, and effective way of monitoring. We describe the policy and scientific rationale for monitoring our seas, alongside a comprehensive description of the types of equipment and methodology currently used and the technologies that are likely to be used in the future. We contextualize the way new technologies and methodologies may impact monitoring and discuss how whole ecosystems models can give an integrated, comprehensive approach to impact assessment. Furthermore, we discuss how an understanding of the value of each data point is crucial to assess the true costs and benefits to society of a marine monitoring programme

    To what extent can decommissioning options for marine artificial structures move us toward environmental targets?

    Get PDF
    Switching from fossil fuels to renewable energy is key to international energy transition efforts and the move toward net zero. For many nations, this requires decommissioning of hundreds of oil and gas infrastructure in the marine environment. Current international, regional and national legislation largely dictates that structures must be completely removed at end-of-life although, increasingly, alternative decommissioning options are being promoted and implemented. Yet, a paucity of real-world case studies describing the impacts of decommissioning on the environment make decision-making with respect to which option(s) might be optimal for meeting international and regional strategic environmental targets challenging. To address this gap, we draw together international expertise and judgment from marine environmental scientists on marine artificial structures as an alternative source of evidence that explores how different decommissioning options might ameliorate pressures that drive environmental status toward (or away) from environmental objectives. Synthesis reveals that for 37 United Nations and Oslo-Paris Commissions (OSPAR) global and regional environmental targets, experts consider repurposing or abandoning individual structures, or abandoning multiple structures across a region, as the options that would most strongly contribute toward targets. This collective view suggests complete removal may not be best for the environment or society. However, different decommissioning options act in different ways and make variable contributions toward environmental targets, such that policy makers and managers would likely need to prioritise some targets over others considering political, social, economic, and ecological contexts. Current policy may not result in optimal outcomes for the environment or society

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects
    corecore