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Abstract 

An experiment during a fisheries independent survey in the North Sea was conducted to test whether 

sampling effort could be reduced without a significant loss in data precision. To examine potential 

effects of reducing tow duration from the standard 30 minutes to a proposed 15 minutes estimates 

of species encounter rates, species richness, and estimates of abundance, biomass and body size were 

analysed. Results show species richness estimates are lower in the short tow category. While biomass 

and abundance at length and body size are significantly affected by the change in tow duration,  

estimates of Large Fish Indicator, the Typical length and Mean-max length are not significantly 

affected by the regime change. The results presented here suggest that a reduction of tow duration 

did not optimise the resolution of biodiversity, and it may affect other survey objectives, such as, 

providing estimates of abundance or biomass for assessment of commercial species. 
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Introduction 

Maximising survey resources in pressing economic conditions is a major concern in fisheries science. 

Since 1998 the standard tow duration for the International Bottom Trawl Survey (IBTS) in the North 

Sea has been 30 minutes (ICES, 2012; 2015a). Recently tow duration has come under scrutiny within 

the International Council for the Exploration of the Sea (ICES) community (IBTS Working Group; 

IBTSWG). An experiment to test the effect of moving to a tow duration of 15 minutes was initiated on 

the basis that this would: 

1. Reduce the risk of gear damage during any single tow, thereby reducing the number of tows 

classified as invalid due to gear damage; 

2. Potentially allow more tows to be carried out, which could improve the precision of species 

abundance indices, and 

3. Potentially reduce overall survey time, with consequent savings in resources (ICES, 2015b). 

Fisheries independent bottom trawl surveys have historically been undertaken to meet fisheries 

management requirements under the European Common Fisheries Policy (CFP) and Data Collection 

Framework (DCF). However, in 2014 the member states involved in the IBTS nominated their own 

surveys to fulfil monitoring obligations under the Marine Strategy Framework Directive (MSFD) (EC, 

2008; 2010). Therefore, the IBTS must supply the data required to derive the ecological indicators 

necessary to assess the status of the whole fish community. Changes in survey design must now take 

account of the needs of stock assessments used for fisheries management purposes and should also 

consider the data requirements for the indicators used for broader ecological assessments (Jennings, 

2005).  

Several different types of indicators have been used to assess variation in the state of fish communities 

(Trenkel and Rochet, 2003; Shin et al., 2010; Shannon et al., 2010; Greenstreet et al., 2012a). Some 

focus on community size composition such as the large fish indicator (LFI) (Greenstreet et al., 2011; 

Shephard et al., 2011; Modica et al., 2014), mean fish weight (Greenstreet and Rogers, 2006) and the 



size spectra slope coefficient (Gislason and Rice, 1998). Others focus on species composition, 

capturing aspects of the evenness of species abundance across all species sampled (Bianchi et al., 

2000; Greenstreet and Hall, 1996; Greenstreet et al., 1999; Heath et al., 2011). Outside of this 

established framework, additional studies address changes in the abundance of specified suites of 

species (Greenstreet et al., 2012b). Any change in survey design that alters the apparent relative 

abundance of scarce components (rare species, large size classes) compared with the more abundant 

components (common species, small size classes) will have an impact on these indicator values. 

Scientific surveys provide fisheries independent indices of species abundance. Fisheries managers are 

concerned about commercial fish, which are generally the more abundant species. However, 

ecosystem assessments are often concerned with some of the rarer species (Dulvy et al., 2003; 

Greenstreet et al., 2012b). Metrics of species richness, for example, are confounded by survey 

techniques that inadequately sample rare species (Greenstreet and Piet, 2008). Previous work has 

examined the effects of tow duration (eg. Ehrich and Stransky, 2001), where a reduction from 60 to 

30 minutes led to a slight reduction in the number of observed species. Changes in survey design that 

may have little impact on indices of abundance of more common species could potentially have 

considerable and adverse consequences for abundance metrics in rarer species (Magurran, 2014).  

Two commonly accepted concepts in fisheries science are: 1) a longer tow provides a more reliable 

measure of species richness occurring in the habitat being sampled as they cover a larger swept area 

presenting a greater opportunity to resolve rarer species, and 2) large fish that are stronger swimmers 

are more efficiently captured (Wardle, 1986). Conversely the “catch-by-surprise” hypothesis held by 

Godø et al. (1990), suggests that the catch per unit effort of herding fish species may decrease with 

increased tow duration. Nevertheless, the number of individuals caught before and after the official 

duration (end effect) increases in shorter tows, which can primarily affect abundant species with a 

higher degree of mobility (Battaglia et al., 2006). 



Fisheries survey data are highly variable, effects on catch rates may be associated with fish reaction 

to the survey gear. Reactions to gear are partially determined by their distribution in the water 

column, size/shape, behaviour, or the degree of association to the seabed (Engås and Godø, 1986; 

Aglen, 1996; Godø, 1990; Fréon et al., 1993; Adlerstein and Ehrich, 2002). The catchability of different 

species depends on many factors, including fish behaviour in relation to the gear type (otter trawl or 

beam trawl), herding efficiency, and the probability of escape at the entrance to the net (Wardle, 

1993; Engås, 1994). For some species, catch rates may vary because their behaviour changes 

throughout the day (Trenkel et al., 2008; Doray et al., 2010); while for other species catch rates may 

also vary over the duration of the tow due to spatial heterogeneity (Kingsley et al., 2002) .  

No significant difference in the mean length of fish caught or the catch per unit effort between 15 min 

and 30 min survey tows (Godø et al., 1990; Walsh, 1991) was identified for cod (Gadus morhua), 

haddock (Melanogrammus aeglefinus) and long rough dab (Hipploglossoides platessoides), yellowtail 

flounder (Limanda ferruginea) and thorny skate (Amblyraja radiata). Similarly, no significant effect 

was found on catch per unit effort, size composition or notably maximum length for Northern shrimp 

(Pandalus borealis) and Greenland halibut (Reinhardtius hippoglossoides) off West Greenland 

(Wieland and Storr-Paulsen, 2006). However, Somerton et al., (2002) noted that the catch per swept-

area increased significantly for two commercial species of crab when tow duration was decreased 

from 30 min to 15 min. 

The overall aim of this current research is to demonstrate the impact of varying tow duration on catch 

composition for groundfish surveys in the North Sea, at scales relevant to fisheries management. Here 

we look at the fish community sampled by the gear using the longer tows (28-32 minute) and ascertain 

if the shorter tows (14-16 minute) are significantly different in terms of the features that they resolve.  

We examine the variance in abundance and biomass estimates in both long and short tow categories 

using linear mixed models. We also examine evenness and richness across the sample area and test 

the MSFD community and population level indicators.  



Data and Analysis 

Survey design 

The Greater North Sea International Otter Trawl Survey is a coordinated survey involving England, 

Scotland, Norway, Germany, Sweden and Denmark in the annual sampling during quarter 3. The 

survey follows a systematic unaligned sampling design (Cochran, 1977), where each ICES statisitcal 

square is sampled at least twice. The general protocol is that each vessel fishes for 30 minutes at a 

speed of 4 knots using a standardised Grande Overture Vertical trawl. Fish species, numbers at length 

and weight are some of the parameters that are recorded. In 2015 and 2016, the IBTSWG elected to 

do experimental tows, where at least one of the tows in each rectangle would be 15 minutes and at 

least one would be 30 minutes. This resulted in an almost 50: 50 spilt in 2015, whereas in 2016 there 

was an increased effort to produce 15 minute tows (Figure 1).  

  

Figure 1: Stations sampled in 2015 and 2016 North Sea Q3 survey which were seleced as part of this 

study. 

Data source 



The quality assured monitoring and assessment data set for the Greater North Sea International 

Quarter 3 Otter Trawl Survey (Moriarty and Greenstreet, 2017), dervied from the NS-IBTS Q3 ICES 

DATRAS dataset, was used for this study. This is a publicly available data source with supporting 

technical documentation describing techniques used to quality assure the DATRAS data downloaded 

on 30-03-2017 (Moriarty et al., 2017; Greenstreet and Moriarty, 2017a/b). The catch data for all 

species is expressed as recorded numbers at length, numbers per km2 at length or biomass per km2 at 

length. Table S1 highlights taxonomic corrections made to the quality assured monitoring and 

assessment data set, which were made in consultation with expert advice (e.g. Heessen et al., 2015).  

The tow data includes geographical position (longitude, latitude), depth (m), tow number, vessel, 

statistical rectangle, tow duration (minutes), swept area (in km2) and year.  

Data selection 

A subset of data was selected from the 2015 and 2016 survey data based on two criteria. The first 

criteria was that an ICES rectangle must have been sampled at least twice one long tow (30 ±2 minute) 

and one short tow (15 ±1 minute). The second criteria was that the experimental short tow must be 

within 30% of the depth range of the standard long tow. This was chosen arbitrarily to reduce variation 

caused by samples with extreme depth ranges. The depth difference in most of the tows are small, 

but in 16% of the tows there is a substantial difference in the depth (e.g. a tow at 17m and a tow at 

73m giving a difference of 56m; Figure S1, supplementary material). The largest difference in the 

depth of paired tows within the same rectangle was 102m (Figure S1 in supplementary material).  

These two criteria produced a suite of tows covering 97 ICES rectangles (0.5 x 1°), consisting of 99 long 

and 99 short tows in 2015 and 103 long and 110 short tows in 2016 (Figure 1). To assess the individual 

tow variablity per rectangle between short and long tows the range of depth, time and the differences 

in speed over ground were examined (Figure S2, supplementary material). 

Analyses of biodiversity  



The primary aim was to demonstrate the effect of varying tow duration on species diversity, richness 

and evenness in the North Sea survey in Q3. The mean species richness for the long and short tows 

for each year was calculated to ascertain if there was a difference between the two categories.  

Linear mixed effect models were used to determine the relationships between richness and tow 

duration, ship, speed over ground, time of tow (diel fluctuations), year, month/day, and depth. The 

interactions between tow duration and ship, and tow duration and year were also tested. ICES 

statistical rectangle was added as a random effect in the model to account for spatial auto correlation. 

Models were implemented using the package “lme4” (Bates et al., 2015) in R (R Core Team, 2017). 

The global linear mixed effect model had the form  

Equation 1:      𝛾𝛾 = 𝑋𝑋𝑋𝑋 + 𝑍𝑍𝑍𝑍 +  𝜀𝜀 

Where 𝑁𝑁 = 411, and 𝛾𝛾 is a 𝑁𝑁 × 1 column vector of the outcome variable (e.g. richness of fish in a 

tow). 𝑋𝑋 is a 𝑁𝑁 × 𝑝𝑝 matrix of the 𝑝𝑝 = 9 fixed effects predictor variables; tow duration (long/short), 

ship (5 ships), speed over ground (km/hr), time of day (diel fluctuations), year, month/day (Julian 

days), and depth (m), the interactions between tow duration and ship, and the interactions between 

tow duration and year. 𝑋𝑋 is 𝑝𝑝 × 1 column vector of fixed effect regression coefficients. 𝑍𝑍  is a 𝑁𝑁 × 𝑞𝑞 

matrix with 1 for the corresponding random effect of ICES statistical square and 0 otherwise, 𝑞𝑞 = 97, 

as we suspect that samples in the same statistical square are correlated. 𝑍𝑍 is a 𝑞𝑞 × 1 vector of the 

random effects; and 𝜀𝜀 is a 𝑁𝑁 × 1 column vector of the residuals not explained by 𝑋𝑋𝑋𝑋 + 𝑍𝑍𝑍𝑍. A gaussian 

identity link distribution was used. Parameters were estimated by maximum likelihood. The best 

fitting model was determined based on Akaike’s information criterion (AIC) scores. All pairwise 

interactions of explanatory variables were tested.   

Species richness curves with bootstrapped confidence intervals were plotted against number of tows 

for both long and short tows categories using a randomised method. Pielou’s evenness index, derived 

from the Shannon diversity index, was calculated for both the long and the short tows. Exploratory 



analysis demonstrated violations of assumptions for parametric testing, therefore, a Scheirer–Ray-

Hare test (Dytham, 1999), was performed to test the hypothesis there is no difference in mean species 

evenness in long and short tows in each year, and no significant interaction between haul duration 

and year. In addition to using non-parametric test, we log transformed the data and assessed the 

interactions using linear models. Both approaches gave the same results, so have elected to report 

only the Scheirer–Ray-Hare test. 

Differences in abundance and biomass 

The second aim was to determine if varying tow duration affected the biomass and abundance 

estimates calculated from the survey data. Again, a linear mixed effects model was employed, the 

global model followed Equation 1, where  𝛾𝛾 was the log transformed abundance (n/km2) and the log 

transformed biomass (kg/km2) respectively. The same model parameters and model selection criteria 

were used.  

Differences in body size  

To assess differences in average body size, fish were grouped in 10 cm length classes and the log 

transformed mean biomass/abundance at grouped length classes by tow in each tow category and 

year. To assess if there were significant differences in actual body size, estimates of mean size and 

standard deviation per tow category per year were calculated and a Pearson’s Chi-squared test with 

simulated p-value (based on 2000 replicates sampled with replacement from all tows) was 

undertaken.  

To test if there was a significant difference between the short and long tows in estimates of MSFD 

indicators being derived from this survey the Large Fish Indicator (LFI), the Typical length (TyL) and 

Mean-max length (MML) were calculated for the appropriate suite of species in the samples (OSPAR, 

2017). The LFI is the ratio of the average biomass (kg/km2) of large demersal fish (≥ 50 𝑐𝑐𝑐𝑐) per ICES 

statistical rectangle  over the average biomass (kg/km2) of all demersal fish sizes per ICES statistical 



rectangle. The LFI were calculated in both 2015 and 2016 to test for a significant difference in the 

estimated LFI for long and for short tows. TyL is the geometric mean length where length is weighted 

by biomass; MML is the arithmetic average of the maximum length obtained by species in the survey 

weighted by biomass; the species were split into two groups, “pelagic” and “demersal” species for the 

two indices. It should be noted, however, that all of these results are based on comparisons of relative 

abundance, relative biomass and relative mean length; therefore, accuracy cannot be evaluated as 

true values are unknown.   

Results 

Biodiversity  

The best fitting linear mixed model for estimation of the mean species richness in the tow suggested 

that tow duration was a significant factor in describing the variability seen in the data. Other fixed 

effect variables that were important in describing the mean species richness were time of day, the 

effect of ship, the depth (m) and the year (Table S3, Figure S3). There was no significant interaction 

between any fixed effects, and they were therefore not included in the final model (Table 1). 

Table 1: Summary of explanatory variables included () or excluded () in the best fitting linear mixed 

models for estimating the factors that explain the variance in species richness, abundance (n/km2) and 

biomass (kg/km2) in tows. 

Fixed Effects Richness 
(no spp) 

Abundance 
(n/km2) 

Biomass 
(kg/km2) 

Tow Duration    
Ship    
Tow Duration : Ship    
Year    
Tow Duration : Year     
Month/Day (Julian days)    
Time of Day (diel fluctuation)    
Depth (m)    
Speed Over Ground (km/hr)    
Random Effect    
1 | ICES Statistical Square     



Sixteen species were uniquely present in long tows, but not short tows. These include some pelagic 

fish like Belone belone (Garfish) Sarda sarda (Atlantic bonito) and Scomber colias (chub mackerel), 

flatfish like Phrynorhombus norvegicus (Norwegian topknot) and Zeugopterus punctatus (topknot) and 

rays such as Leucoraja fullonica (Shagreen ray). Conversely, seven species were collected in short tows 

but not in long tows these included elasmobranchs such as Etmopterus spinax (lantern shark), 

Mustelus spp. (smooth-hound) and Raja brachyura (blond ray). Sharks and rays such as L. fullonica 

(Shagreen ray) and R. brachyura (Blond ray), E. spinax (lanternshark), Mustelus spp (smooth-hounds) 

were not consistently sampled (see Table S1 for full list). In the area selected for analysis the mean 

number of species collected in the five years prior to the start of the experiment (2010-2014) was 78 

species. While the long tows are consistent with previous years with 77 and 78 species encountered, 

as expected when looking at a similar total number of hauls, the short tows fell short of this with 71 

and 73 species encountered respectively (Table 2). The increased effort to sample more diverse 

habitats meant the total number of species reported in 2015 and 2016 was above average in the area 

sampled (83 and 87 species, respectively), the increased species were predomently reported by 

England, who exclusively fished for 30 min and fished similar stations in both years. In 2016, within 

our study area,  England was the only country to report Belone belone (Garfish), C. maximus (basking 

shark), L. liparis liparis (common seasnail), L. vahlii (Vahl’s eelpout), P. marinus (sea lamprey) and S. 

trutta trutta (sea trout). 

All species encountered and the number of times a species occurred is listed in Table S1. In some 

cases, species only occurred once within the study area, 50 species occurred in less than 5% of 

samples. To ascertain the effect of these species which were not well sampled testing for differences 

in abundance and biomass was performed on the full data set and a reduced dataset that excluded 

the poorly sampled species. The results were not significantly different between the two data sets; 

therefore, the following analyses included all the species listed in Table S1. There was no significant 

interaction between year and tow duration, nor were any significant differences found for the year or 

tow duration in the Pielou's evenness. 



Table 2: Summary of the mean number of species encountered per ICES rectangle in each category and 

year. In 2015 a total of 83 fish species were encountered while in 2016 87 species where identified. The 

average number of species in sampled in the period from 2010-2014 was 78. 

Year Category Mean number of 
species per rectangle 

Standard 
deviation 

Total number of 
species encountered 

2010 long 17.54 3.98 75 
2011 long 18.14 4.31 78 
2012 long 18.61 3.94 78 
2013 long 17.68 4.89 78 
2014 long 18.62 4.39 82 
2015 long 16.29 3.96 77 
2015 short 13.94 3.64 71 
2016 long 16.87 4.06 78 
2016 short 14.77 4.35 73 

 

The difference in potential species richness within the two tow categories, showing the difference in 

ability to reach a species richness of 50 species is highlighted in figure 2. The long tow category was 

33% more effective at sampling species richness, this suggests that a 33% increase in the number of 

short tows would provide a similar species richness estimate. When increased to a species richness of 

75 species this gap widens and a 67% increase in the number of short tows to long tows would be 

needed. 



Figure 2: Cumulative species richness curves for long tows in dark grey and short tows in light grey. The 

black dotted lines show that to reach a species richness of 50 species, approximately 15 tows in the 

“long” or 20 tows in the “short” tow category are needed (33% increase in effort). Whereas to reach a 

species richness of 75 species, using the “long” tow category approximately 75 tows are needed and 

using the “short” tow category approximately 125 tows are needed (67% increase in effort). Vertical 

lines provide the standard deviation from random permutations of the data. 

Abundance and Biomass 

The best fitting linear mixed model for estimation of the mean abundance (n/km2) in the tow 

suggested that tow duration is a significant factor in describing the variance seen in the data. Other 

fixed effect variables that were important in describing the mean abundance (n/km2) according to the 

best fit model were time of day, the effect of ship, and the day of the month (Table S4, Figure S4). 

There was no significant pairwise interaction between any fixed effects (Table 1). Similarly tow 

duration was a significant factor in describing the variance seen in the mean biomass (kg/km2), other 

fixed effect variables that are important in describing the mean biomass (kg/km2) are time of day, the 

effect of ship, and the year (Table S5, Figure S5). 



Body Size  

When samples were grouped into length classes and the average biomass/abundance at size was 

compared, evidence for differences between the short and long tows was found for abundance. The 

results showed that there was no significant interaction between year and tow duration, but there 

were significant differences (p < 0.05) in the tow categories, and year was not found to be a significant 

factor.  The log-transformed mean abundance and mean biomass calculated by summing the the log 

transformed mean biomass/abundance at grouped length classes are outlined in table 3. Generally 

short tows had a higher mean biomass and abundance at size, in particular for larger sizes (> 40 cm) 

than long tows when the data was standardised for swept area (km2) (Figure 3). The > 99cm class 

shows there is a higher mean abundance at size for short tows, while the biomass reflects virtually no 

difference, this is due to several larger fish in the long tows that balanced out the more numerous 

smaller fish in the short tows.  

The 30-39 cm class is dominated by three pelagic species Atlantic horse mackerel (Trachurus 

trachurus), herring  (Clupea harengus),  and  mackerel (Scomber scombrus) which accounted for about 

65% of the abundance in this length class in long tows and 40% of the catch in short tows. The other 

dominant species in this class are haddock (M. aeglefinus) and whiting (M. merlangus) which 

accounted for about 25% of the abundance in this length class in long tows and 37% of the catch in 

short tows. 

Table 3: Summary of the mean across length classes of the log-transformed abundance and biomass 

at length in each tow duration category and year.  

Year Category Mean log-
abundance 
(numbers/km2) 

Standard deviation 
(Log-abundance) 

Mean log-
biomass (kg/km2) 

Standard 
deviation 
(Log- biomass) 

2015 long 4.24 1.99 4.16 1.22 
2015 short 4.77 1.94 4.50 1.11 
2016 long 4.10 1.89 4.02 1.22 
2016 short 4.58 1.69 4.47 1.12 



  

 

Figure 3 (a.) Bar charts showing the difference (short tow – long tow) between log-transformed mean 

biomass (kg/km2) in short and long tow categories for groups of length of all fish over the two years. 

(b.)  Showing the difference between log-transformed mean abundance (numbers/km2) in short and 

long tow categories for groups of length of all fish over the two years.  

Given the apparent differences in abundance at size between short and long tow categories a 

Pearson’s chi-squared (χ2) test was carried out to examine differences in size composition of fish in 

each category. A χ2 value of 2963600 (p < 0.001) for 2000 bootstrapped resamples was calculated. This 

suggests a significant relationship between the tow duration categories for the length of fish caught.  

Table 4 highlights the mean size of fish caught in each category and year. The long tow category had 

a higher mean size than the short tow category.  

Table 4: Summary of the mean size and standard deviation of fish caught in each category and year, 

based on number/km2 of individuals caught in the haul.  

Year Category Mean size of fish (cm) Standard 
deviation 

2015 Long 13.28 6.13 



2015 Short 12.2 5.58 
2016 Long 13.19 7.11 
2016 Short 11.89 6.80 

 

The LFI with a 50 cm threshold was dominated by common skate (Dipturus batis), followed by cod 

(Gadus morhua), monkfish (Lophius piscatorius), pollack (Pollachius virens), and hake (Merluccius 

merluccius). Other species which made up the community of larger fish included rays and sharks 

(Squalus acanthias, Raja clavata, R. montagui, Mustelus spp.), and commercially important species 

such as haddock (M. aeglefinus). There was no significant difference (p = 0.05) in the MSFD indicator 

(LFI, MML and TyL) results in the long and short tows (Figure 4). 

 

Figure 4. Box plots show the mean and the variance for TyL, MML LFI and Pielou’s evenness metrics in 

both long and short tow categories. There was no significant difference between long and short tow 

categories in any of these metrics.  

 



Discussion  

This study demonstrates that tow duration , depth (m), diel fluctuation, ship, and year, are significant 

variables in predicting number of species in a haul (Table 1; Table S3; Figure S3).  The long tow category 

reached a higher species diversity than the shorter tows (Table 2). The individual species recorded did 

differ in each category in each year, with rarer species not consistently present across years. The 

culumative frequency curves in figure 2 highlight the disparity between the long and short tows. 

Subsampling the 30 min tows has been found to limit the species richness in a similar manner to the 

shortened tow duration (Ehrich and Stransky, 2001), so understanding to what degree are stations 

subsampled in the current 30 min tow regime is important. If one country consistently subsamples 

stations it may lead to a bias in species richness over time in that area. On the balance of evidence 

presented, in terms of the species richness estimates staying with the longer 30 minute tows is 

capturing additional information, and will give better estimates of species richness (this is a function 

of the larger net swept area in the longer tows). However, this experiment only addresses the 

consequences of a reduction in fishing effort, as the data available generally has one short tow for 

each long tow in each rectangle sampled. Therefore, in order to see how this applies more broadly we 

would need to examine paired tows that account other factors that we cannot adequately test here, 

such as vessel and crew effect.   

With a longer tow and a greater net swept area the probability of encountering a rare species 

increases, the argument stands that using a shorter tow duration and at the same time an increased 

number of stations might allow additional habitats to be sampled and could thereby increase the 

probability of encountering rare species (Pennington and Vølstad, 1991). However, this only holds if 

the time gained permits to carrying out additional tows (including steaming time) in a given day, and 

the survey design moves from rectangle to habitat stratification. The increase in species richness 

through sampling a variety of habitats in the North Sea is demonstrated in Wieland (2017a). Species 

richness varied at different depths, being significantly higher at deeper stations, due to an increase in 



numbers of sharks and rays (Wieland, 2017a). This is reflected in our linear mixed model investigating 

species richness, depth was a significant variable in predicting number of species in a haul (Table S3). 

A key aspect of reducing tow duration is to adapt the current sampling regime and sample more 

habitats within the North Sea. In 2016 a greater variety of habitats were sampled, Wieland, (2017a) 

found that there was an increase in biomass at depth. Depth of the tow will affect the community 

composition and the performance of the gear, so rectangles with paired tows that have a large 

difference in depth may not be directly comparable; this has been addressed by limiting the depth 

band of tows within rectangles for the standard survey area. Thus, by reducing the tow time to 15 min 

and freeing up time to sample more habitats at different depths the survey may in fact become 

impaired in its primary goal of detecting trends in abundance and biomass in the fish community.  

The general picture in the abundance in the short tow category is higher than in the long tow, with 

the exception of fish in the 30-39 cm class and the >100cm class (Figure 3). The same picture is seen 

in the biomass estimates.  The short tow category had a significantly higher logged mean abundance 

at length than the long tow category. The investigation of arithmetic mean body size class by 

abundance/biomass suggested a significant difference in the mean body size caught in long and short 

tows, with long tows catching slightly larger fish on average than the short tows. However, the 

geometric mean length weighted by biomass (TyL) was robust to this influence. Similarly, the species 

composition metric (MML) was also robust to the change in tow duration.  

The effective sample sizes for estimating population characteristics (e.g. age) are typically low for the 

IBTS surveys, around one fish at length, on average, per tow, this implies that there may be little to 

gain by increasing tow duration beyond 15 min for estimating population characteristics.  Devine and 

Pennington (2017) suggest that for the IBTS survey, 15 min tows are more efficient for estimating 

catch per unit effort series than 30 min tows. In addition, other studies on the North Sea Q3 

experimental tow data have examined the effect on catch rates by ages for individual species such as 

cod (G. morhua), and whiting (Merlangius merlangus) (Wieland, 2017b), haddock (M. aeglefinus) and 



Norway pout (Trisopterus esmarkii) (Jaworski et al., 2017).  There was no clear indication that the 

experimental 15 min tows were any less representative than the standard 30 min for catch rates at 

age of these four species (Jaworski et al., 2017; Wieland, 2017b).  

Attributing the variation in species richness, abundance, biomass and body size in a tow to just one 

factor, duration of a tow, is not always possible, as the survey data is highly variable the community 

structure varies in space and time, and the North Sea environment is heterogeneous.  Efforts have 

been made to standardize protocols in the North Sea surveys, by fixing tow duration, vessel speed and 

standardizing the gear. However, in practice, tow duration varies, for example if a very large pelagic 

shoal is detected on the sonar then a chief scientist may decide to tow early to protect the nets. 

Vessel speed, also known as speed over ground, is difficult to regulate as this is only one measure of 

speed, without a clear measure of speed in water it is difficult to ascertain how the variation of vessel 

speed will affect the catch composition. Figure S2 shows how each vessel performed at 30 min tows 

and 15 min tows respectively. In some cases, the vessels deviated from the expected 4 knots (speed 

over ground). The protocol set out for this survey, to maintain a constant speed of 4 knots through 

water and over ground is impracticable. A departure from target speed has been found to affect catch 

rates of target species in previous studies (Adlerstein and Ehrich, 2002; Koeller, 1991; Main and 

Sangster, 1981; Neproshin, 1979; Ona and Chruickshank, 1986; Olsen et al., 1982; Olsen, 1990; Ona 

and Godø, 1990). In our linear mixed models speed was not a significant factor in describing variance 

in richness, abundance or biomass estimates (Table 1), which is not surprising, since vessels operate 

around a given target speed (Figure S2). It is noted that the “standard” gear as described in the survey 

manual is not used by any participating nation (ICES, 2015b).  

Time of day plays a part in variation of catch rates for some species, this is reflected in our linear mixed 

models, where time of day is a significant factor in all three models. In this study the time of day varies 

for paired tows in a given rectangle, in some cases the tows occur as close as 2 mins apart, in other 

cases the range is much higher, for example 2.45 am for one tow and 6.55 pm for the second. Catches 



of several species are known to fluctuate with time of day, (Adlerstein and Trumble, 1993; Adlerstein 

and Ehrich, 2002; Ehrich and Gröger, 1989; Pitt et al., 1981; Wieland et al., 1998), so paired tows 

should be performed as close together as possible to limit bias. Depth of the tow will affect the 

community composition and the performance of the gear, so rectangles with paired tows that have a 

large difference in depth may not be directly comparable. Estimates of wing swept area are also 

imprecise. These mechanical parameters alongside fish behaviours lead to uncertainty in estimates of 

fish abundance (numbers per km2) and biomass (kg/km2).  

These considerations may compromise the ability to assess the differences in one factor, as best 

practice would be to control all other variables. Given the time and financial constraints on 

participating nations in the current economic climate, it would not be practical to perform such an 

experiment on this scale.  As these experimental tows are not truly paired tows, i.e. two vessels towing 

side by side, at the same speed and at the same depth, there is a high amount of additional variation. 

However, when paired experiments have been carried out, the results still showed a large variability 

between tows carried out in close proximity at the same time (Doray et al., 2010). This makes it very 

difficult to draw any significant results from any tests performed. As a result of this variation we have 

elected to look at the average changes over the whole study area, to ascertain if a signal is present 

that suggests a consistent bias based on tow duration.  

Optimisation of survey resources while managing the needs and expectations of the end users is an 

issue that affects many nations. In this case the dicussion that has been initiated on optimising the 

survey design will require big picture thinking. This experiment, addressing one factor, tow duration, 

must be set in the context of the wider discussion which considers all the potential future changes, 

such as a new fishing gear, that will be required to maintain this survey, and other similar surveys into 

the future. Fisheries survey data are highly variable and disentangling within survey variation and 

understanding how this affects individual samples is a difficult task. By changing a key factor in the 

survey design there is a risk of undermining the primary goal of the survey. Such a change must be 



decided on balance of the potential gains for example, reducing tow duration may increase precision 

of a survey by allowing time to collect more samples. The average number of stations sampled by the 

full survey from 2011-2014 was 323 (Table S2 in supplementary material), assuming reducing tow 

duration to 15 mins would allow one additional tow per day for each vessel, this increases the total 

number of stations sampled to 424 stations, representing a 31% increase in the number of stations 

sampled. If each nation could carry out 1.5 extra tows per day then there would be a 47% increase in 

stations sampled, however this is unlikely given the distance between stations. Based on projections 

using a semi-Gleason fit on the species accumulation curves, a 31% increase in short hauls may provide 

a similar amount of species richness information as the current survey design.  

A major concern when looking at historic surveys with longer time series is disrupting the time series 

and therefore losing long term information. In this particular case, the is another survey conducted in 

Q1 which largely samples the same community (with the exception of a few migratory species) and 

over a much longer time period therefore the histoical information for this community may still be 

maintained despite change to the Q3 survey.  There are many practical benefits to implementation of 

a reduction of tow duration within the North Sea Q3 survey such as less wear and tear on gear; 

increased coverage of habitats; a reduction in subsampling of large tows; and a potential reduction in 

animal mortality. Reducing the impact of marine surveying is important and a reduction in tow 

duration may be part of the solution. However, if there is a substantive increase in number of tows 

carried out, the displacement in effort may impact on more habitats. The results presented illustrate 

the potential losses involved as it supports the assertion that a reduction in tow duration, given the 

current survey design,  would have a negative impact on the capacity to resolve species richness, and 

may also affect the main survey objectives to supply data to the assessment working groups to fine-

tune North Sea regional calculations of estimates of species abundance and biomass in support of the 

first quarter assessments. Before any longterm changes are made to a surveys design it is imperative 

that a broader strategy on survey modernisation and impact reduction is discussed and agreed upon.  
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