15 research outputs found

    Succinate Dehydrogenase Is a Direct Target of Sirtuin 3 Deacetylase Activity

    Get PDF
    BACKGROUND: Sirtuins (SIRT1-7) are a family of NAD-dependent deacetylases and/or ADP-ribosyltransferases that are involved in metabolism, stress responses and longevity. SIRT3 is localized to mitochondria, where it deacetylates and activates a number of enzymes involved in fuel oxidation and energy production. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we performed a proteomic screen to identify SIRT3 interacting proteins and identified several subunits of complex II and V of the electron transport chain. Two subunits of complex II (also known as succinate dehydrogenase, or SDH), SDHA and SDHB, interacted specifically with SIRT3. Using mass spectrometry, we identified 13 acetylation sites on SDHA, including six novel acetylated residues. SDHA is hyperacetylated in SIRT3 KO mice and SIRT3 directly deacetylates SDHA in a NAD-dependent manner. Finally, we found that SIRT3 regulates SDH activity both in cells and in murine brown adipose tissue. CONCLUSIONS/SIGNIFICANCE: Our study identifies SDHA as a binding partner and substrate for SIRT3 deacetylase activity. SIRT3 loss results in decreased SDH enzyme activity, suggesting that SIRT3 may be an important physiological regulator of SDH activity

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo

    SIRT4 represses peroxisome proliferator-activated receptor α activity to suppress hepatic fat oxidation

    No full text
    Sirtuins are a family of protein deacetylases, deacylases, and ADP-ribosyltransferases that regulate life span, control the onset of numerous age-associated diseases, and mediate metabolic homeostasis. We have uncovered a novel role for the mitochondrial sirtuin SIRT4 in the regulation of hepatic lipid metabolism during changes in nutrient availability. We show that SIRT4 levels decrease in the liver during fasting and that SIRT4 null mice display increased expression of hepatic peroxisome proliferator-activated receptor α (PPARα) target genes associated with fatty acid catabolism. Accordingly, primary hepatocytes from SIRT4 knockout (KO) mice exhibit higher rates of fatty acid oxidation than wild-type hepatocytes, and SIRT4 overexpression decreases fatty acid oxidation rates. The enhanced fatty acid oxidation observed in SIRT4 KO hepatocytes requires functional SIRT1, demonstrating a clear cross talk between mitochondrial and nuclear sirtuins. Thus, SIRT4 is a new component of mitochondrial signaling in the liver and functions as an important regulator of lipid metabolis
    corecore