13 research outputs found

    Transmembrane signalling in eukaryotes: a comparison between higher and lower eukaryotes

    Full text link

    Transmembrane signalling in eukaryotes: a comparison between higher and lower eukaryotes

    Full text link

    Insight into nickel-cobalt oxysulfide nanowires as advanced anode for sodium-ion capacitors

    Get PDF
    Transition metal oxides have a great potential in sodium-ion capacitors (SICs) due to their pronouncedly higher capacity and low cost. However, their poor conductivity and fragile structure hinder their development. Herein, core-shell-like nickel-cobalt oxysulfide (NCOS) nanowires are synthesized and demonstrated as an advanced SICs anode. The bimetallic oxysulfide with multiple cation valence can promote the sodium ion adsorption and redox reaction, massive defects enable accommodation of the volume change in the sodiation/desodiation process, meanwhile the core-shell-like structure provides abundant channels for fast transfer of sodium ions, thereby synergistically making the NCOS electrode exhibit a high reversible sodium ion storage capacity (1468.5 mAh g^-1 at 0.1 A g^-1) and an excellent cyclability (90.5% capacity retention after 1000 cycles). The in-situ X-ray diffraction analysis unravels the insertion and conversion mechanism for sodium storage in NCOS, and the enhanced capability of NCOS is further verified by the kinetic analysis and theoretical calculations. Finally, SICs consisting of the NCOS anode and a boron-nitrogen co-doped carbon nanotubes cathode deliver an energy density of 205.7 Wh kg^-1, a power density of 22.5 kW kg^-1, and an outstanding cycling lifespan. These results indicate an efficient strategy in designing a high-performance anode for sodium storage based on bimetallic dianion compounds

    Rhodium-Catalyzed Direct C‑H Bond Cyanation in Ionic Liquids

    No full text
    A Cp*Rh­(III)/IL-based direct C-H bond cyanation system was developed for the first time. The system is a mild, efficient, and recyclable method for the synthesis of aryl nitriles. Many different directing groups can be used in this cyanation, and the reaction tolerates a variety of functional groups

    Effects of melatonin on rumen microorganisms and methane production in dairy cow: results from in vitro and in vivo studies

    No full text
    Abstract Background Methane (CH4) is a major greenhouse gas, and ruminants are one of the sources of CH4 which is produced by the rumen microbiota. Modification of the rumen microbiota compositions will impact the CH4 production. In this study, the effects of melatonin on methane production in cows were investigated both in the in vitro and in vivo studies. Results Melatonin treatment significantly reduced methane production in both studies. The cows treated with melatonin reduced methane emission from their respiration by approximately 50%. The potential mechanisms are multiple. First, melatonin lowers the volatile fatty acids (VFAs) production in rumen and reduces the raw material for CH4 synthesis. Second, melatonin not only reduces the abundance of Methanobacterium which are responsible for generating methane but also inhibits the populations of protozoa to break the symbiotic relationship between Methanobacterium and protozoa in rumen to further lowers the CH4 production. The reduced VFA production is not associated with food intake, and it seems also not to jeopardize the nutritional status of the cows. This was reflected by the increased milk lipid and protein contents in melatonin treated compared to the control cows. It is likely that the energy used to synthesize methane is saved to compensate the reduced VFA production. Conclusion This study enlightens the potential mechanisms by which melatonin reduces rumen methane production in dairy cows. Considering the greenhouse effects of methane on global warming, these findings provide valuable information using different approaches to achieve low carbon dairy farming to reduce the methane emission. Video Abstrac

    CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein & Cell 6(5

    No full text
    ABSTRACT Genome editing tools such as the clustered regularly interspaced short palindromic repeat (CRISPR)-associated system (Cas) have been widely used to modify genes in model systems including animal zygotes and human cells, and hold tremendous promise for both basic research and clinical applications. To date, a serious knowledge gap remains in our understanding of DNA repair mechanisms in human early embryos, and in the efficiency and potential off-target effects of using technologies such as CRISPR/Cas9 in human pre-implantation embryos. In this report, we used tripronuclear (3PN) zygotes to further investigate CRISPR/Cas9-mediated gene editing in human cells. We found that CRISPR/Cas9 could effectively cleave the endogenous β-globin gene (HBB). However, the efficiency of homologous recombination directed repair (HDR) of HBB was low and the edited embryos were mosaic. Off-target cleavage was also apparent in these 3PN zygotes as revealed by the T7E1 assay and whole-exome sequencing. Furthermore, the endogenous delta-globin gene (HBD), which is homologous to HBB, competed with exogenous donor oligos to act as the repair template, leading to untoward mutations. Our data also indicated that repair of the HBB locus in these embryos occurred preferentially through the non-crossover HDR pathway. Taken together, our work highlights the pressing need to further improve the fidelity and specificity of the CRISPR/Cas9 platform, a prerequisite for any clinical applications of CRSIPR/Cas9-mediated editing

    Signaling Components and Pathways

    No full text

    Transmembrane signalling in eukaryotes: a comparison between higher and lower eukaryotes

    Get PDF
    corecore