17 research outputs found

    Intravitreal implants manufactured by supercritical foaming for treating retinal diseases

    Get PDF
    Chronic retinal diseases, such as age-related macular degeneration (AMD), are a major cause of global visual impairment. However, current treatment methods involving repetitive intravitreal injections pose financial and health burdens for patients. The development of controlled drug release systems, particularly for biological drugs, is still an unmet need in prolonging drug release within the vitreous chamber. To address this, green supercritical carbon dioxide (scCO2) foaming technology was employed to manufacture porous poly(lactic-co-glycolic acid) (PLGA)-based intravitreal implants loaded with dexamethasone. The desired implant dimensions were achieved through 3D printing of customised moulds. By varying the depressurisation rates during the foaming process, implants with different porosities and dexamethasone release rates were successfully obtained. These implants demonstrated controlled drug release for up to four months, surpassing the performance of previously developed implants. In view of the positive results obtained, a pilot study was conducted using the monoclonal antibody bevacizumab to explore the feasibility of this technology for preparing intraocular implants loaded with biologic drug molecules. Overall, this study presents a greener and more sustainable alternative to conventional implant manufacturing techniques, particularly suited for drugs that are susceptible to degradation under harsh conditions

    The Relationship between Dioxin-Like Polychlorobiphenyls and IGF-I Serum Levels in Healthy Adults: Evidence from a Cross-Sectional Study

    Get PDF
    OBJECTIVE: Insulin-like growth factor I (IGF-I) and dioxin-like polychlorobiphenyls (DL-PCBs) have been associated with the pathogenesis of several diseases like cancer, diabetes and growth disorders. Because it has been suggested that organohalogenated contaminants could influence IGF-I levels in adults, the potential relationship between DL-PCBs and IGF-I serum levels was studied in 456 healthy adults from a representative sample of the general population of the Canary Islands (Spain). DESIGN: Free circulating serum levels of IGF-I and IGFBP-3 were measured through an ELISA methodology, while the serum levels of the 12 DL-PCBs congeners (IUPAC numbers # 77, 81, 105, 114, 118, 123, 126, 156, 157, 167, 169, and 189) were measured by gas chromatography/mass spectrometry (GC-MS). RESULTS: DL-PCBs 156 and 167, Total DL-PCBs body burden (∑PCBs: sum over the 12 measured DL-PCBs), and Total toxic burden (in terms of toxic equivalence to dioxins: ∑TEQs) showed a trend of inverse association with IGF-I serum levels in the whole studied population. After adjusting for potential confounders, including gender, body mass index (BMI), age, and IGF-binding protein-3 (IGFBP-3), younger (18-45 years) women with lower BMI (<27 kg/m(2)) and detectable levels of DL-PCB-156 showed significantly lower IGF-I levels than those in the same age and BMI subgroup with non-detectable levels of DL-PCB-156 (p<0.001). Similarly, ∑PCBs and ∑TEQs showed a tendency to an inverse association with IGF-I levels in the same group of women (p=0.017 and p=0.019 respectively). CONCLUSIONS: These findings suggest that DL-PCBs could be involved in the regulation of the IGF-system in a way possibly influenced by gender, age and BMI. Although these results should be interpreted with caution, such circumstances could contribute to explain the development of diseases associated to the IGF system

    3D printed tacrolimus suppositories for the treatment of ulcerative colitis

    No full text
    Ulcerative colitis is a global health problem, affecting millions of individuals worldwide. As an inflammatory condition localised in the large intestine, rectal delivery of immunosuppressive therapies such as tacrolimus is a promising strategy to maximise drug concentration at the site of action whilst minimising systemic side effects. Here, for the first time, self-supporting 3D-printed tacrolimus suppositories were prepared without the aid of moulds using a pharmaceutical semi-solid extrusion (SSE) 3D printer. The suppositories were printed vertically in three different sizes using combinations of two lipid pharmaceutical excipients (Gelucire 44/14 or Gelucire 48/16) and coconut oil. Although both suppository formulations had the appropriate viscosity characteristics for printing, the Gel 44 formulation required less energy and force for extrusion compared to the Gel 48 system. The Gel 44 disintegrated more rapidly but released tacrolimus more slowly than the Gel 48 suppositories. Although the tacrolimus release profiles were significantly different, both suppository systems released more than 80% drug within 120 min. DSC and XRD analysis was inconclusive in determining the solid-state properties of the drug in the suppositories. In summary, this article reports on the fabrication of 3D printed self-supporting suppositories to deliver personalised doses of a narrow therapeutic index drug, with potential benefits for patients with ulcerative colitis

    Chemometric and chemoinformatic analyses of anabolic and androgenic activities of testosterone and dihydrotestosterone analogues

    No full text
    Predictive quantitative structure-activity relationship (QSAR) models of anabolic and androgenic activities for the testosterone and dihydrotestosterone steroid analogues were obtained by means of multiple linear regression using quantum and physicochemical molecular descriptors (MD) as well as a genetic algorithm for the selection of the best subset of variables. Quantitative models found for describing the anabolic (androgenic) activity are significant from a statistical point of view: R2 of 0.84 (0.72 and 0.70). A leave-one-out cross-validation procedure revealed that the regression models had a fairly good predictability [q2 of 0.80 (0.60 and 0.59)]. In addition, other QSAR models were developed to predict anabolic/androgenic (A/A) ratios and the best regression equation explains 68% of the variance for the experimental values of AA ratio and has a rather adequate q2 of 0.51. External validation, by using test sets, was also used in each experiment in order to evaluate the predictive power of the obtained models. The result shows that these QSARs have quite good predictive abilities (R2 of 0.90, 0.72 (0.55), and 0.53) for anabolic activity, androgenic activity, and A/A ratios, respectively. Last, a Williams plot was used in order to define the domain of applicability of the models as a squared area within ±2 band for residuals and a leverage threshold of h = 0.16. No apparent outliers were detected and the models can be used with high accuracy in this applicability domain. MDs included in our QSAR models allow the structural interpretation of the biological process, evidencing the main role of the shape of molecules, hydrophobicity, and electronic properties. Attempts were made to include lipophilicity (octanol-water partition coefficient (log P)) and electronic (hardness (η)) values of the whole molecules in the multivariate relations. It was found from the study that the log P of molecules has positive contribution to the anabolic and androgenic activities and high values of η produce unfavorable effects. The found MDs can also be efficiently used in similarity studies based on cluster analysis. Our model for the anabolic/androgenic ratio (expressed by weight of levator ani muscle, LA, and seminal vesicle, SV, in mice) predicts that the 2-aminomethylene-17α-methyl-17β-hydroxy-5α-androstan-3- one (43) compound is the most potent anabolic steroid, and the 17α-methyl-2β,17β-dihydroxy-5α-androstane (31) compound is the least potent one of this series. The approach described in this report is an alternative for the discovery and optimization of leading anabolic compounds among steroids and analogues. It also gives an important role to electron exchange terms of molecular interactions to this kind of steroid activity.This research was supported by the Center for Pharmaceutical Chemistry (CQF), Cuba and the Faculty of Chemistry, Universidad de La Habana, and computational facilities were provided by Deutscher Akademischer Austauschdienst (DAAD) in Bonn, Germany. The Universidad Autónoma de Madrid—Universidad de La Habana program under the auspices of CajaMadrid, Spain, also supported part of this work. One of the authors (M.-P.Y.) thanks the program ‘Estades Temporals per a Investigadors Convidats’ for a fellowship to work at Valencia University (2008). Finally, but very importantly, M.-P.Y. thanks the Flemish Interuniversity Council (VLIR) of Belgium for partial support of this research through a part of the fund of the project ‘Strengthening postgraduate education and research in Pharmaceutical Sciences’. Anonymous reviewers are gratefully acknowledged for their helpful suggestions that have led to improving the paperPeer Reviewe

    3D Printed Tacrolimus Rectal Formulations Ameliorate Colitis in an Experimental Animal Model of Inflammatory Bowel Disease

    Get PDF
    The aim of this study was to fabricate novel self-supporting tacrolimus suppositories using semisolid extrusion 3-dimensional printing (3DP) and to investigate their efficacy in an experimental model of inflammatory bowel disease. Blends of Gelucire 44/14 and coconut oil were employed as lipid excipients to obtain suppository formulations with self-emulsifying properties, which were then tested in a TNBS (2,4,6-trinitrobenzenesulfonic acid) induced rat colitis model. Disease activity was monitored using PET/CT medical imaging; maximum standardized uptake values (SUVmax), a measure of tissue radiotracer accumulation rate, together with body weight changes and histological assessments, were used as inflammatory indices to monitor treatment efficacy. Following tacrolimus treatment, a significant reduction in SUVmax was observed on days 7 and 10 in the rat colon sections compared to non-treated animals. Histological analysis using Nancy index confirmed disease remission. Moreover, statistical analysis showed a positive correlation (R2 = 71.48%) between SUVmax values and weight changes over time. Overall, this study demonstrates the effectiveness of 3D printed tacrolimus suppositories to ameliorate colitis and highlights the utility of non-invasive PET/CT imaging to evaluate new therapies in the preclinical area

    Plasma levels of pollutants are much higher in loggerhead turtle populations from the Adriatic Sea than in those from open waters (Eastern Atlantic Ocean)

    No full text
    In this paper we determined the levels of 63 environmental contaminants, including organic (PCBs, organochlorine pesticides, and PAHs) and inorganic (As, Cd, Cu, Pb, Hg and Zn) compounds in the blood of loggerhead turtles (Caretta caretta) from two comparable populations that inhabit distinct geographic areas: the Adriatic Sea (Mediterranean basin) and the Canary Islands (Eastern Atlantic Ocean). All animals were sampled at the end of a period of rehabilitation in centers of wildlife recovery, before being released back into the wild, so they can be considered to be in good health condition. The dual purpose of this paper is to provide reliable data on the current levels of contamination of this species in these geographic areas, and secondly to compare the results of both populations, as it has been reported that marine biota inhabiting the Mediterranean basin is exposed to much higher pollution levels than that which inhabit in other areas of the planet. According to our results it is found that current levels of contamination by organic compounds are considerably higher in Adriatic turtles than in the Atlantic ones (ΣPCBs, 28.45 vs. 1.12 ng/ml;ΣOCPs, 1.63 vs. 0.19 ng/ml;ΣPAHs, 13.39 vs. 4.91 ng/ml; p b 0.001 in all cases). This is the first time that levels of PAHs are reported in the Adriatic loggerheads. With respect to inorganic contaminants, although the differences were not as great, the Adriatic turtles appear to have higher levels of some of the most toxic elements such as mercury (5.74 vs. 7.59 μg/ml, p b 0.01). The results of this study confirm that the concentrations are larger in turtles from the Mediterranean, probably related to the high degree of anthropogenic pressure in this basin, and thus they are more likely to suffer adverse effects related to contaminants
    corecore