77 research outputs found

    Spiral Ganglion Degeneration and Hearing Loss as a Consequence of Satellite Cell Death in Saposin B-Deficient Mice

    Get PDF
    Saposin B (Sap B) is an essential activator protein for arylsulfatase A in the hydrolysis of sulfatide, a lipid component of myelin. To study Sap B’s role in hearing and balance, a Sap B-deficient (B-/-) mouse was evaluated. At both light and electron microscopy (EM) levels, inclusion body accumulation was seen in satellite cells surrounding spiral ganglion (SG) neurons from postnatal month 1 onward, progressing into large vacuoles preceding satellite cell degeneration, and followed by SG degeneration. EM also revealed reduced or absent myelin sheaths in SG neurons from postnatal month 8 onwards. Hearing loss was initially seen at postnatal month 6 and progressed thereafter for frequency-specific stimuli, whereas click responses became abnormal from postnatal month 13 onward. The progressive hearing loss correlated with the accumulation of inclusion bodies in the satellite cells and their subsequent degeneration. Outer hair cell numbers and efferent function measures (distortion product otoacoustic emissions and contralateral suppression) were normal in the B-/- mice throughout this period. Alcian blue staining of SGs demonstrated that these inclusion bodies corresponded to sulfatide accumulation. In contrast, changes in the vestibular system were much milder, but caused severe physiologic deficits. These results demonstrate that loss of Sap B function leads to progressive sulfatide accumulation in satellite cells surrounding the SG neurons, leading to satellite cell degeneration and subsequent SG degeneration with a resultant loss of hearing. Relative sparing of the efferent auditory and vestibular neurons suggests that alternate glycosphingolipid metabolic pathways predominate in these other systems

    A Large Genome-Wide Association Study of Age-Related Hearing Impairment Using Electronic Health Records

    Get PDF
    Age-related hearing impairment (ARHI), one of the most common sensory disorders, can be mitigated, but not cured or eliminated. To identify genetic influences underlying ARHI, we conducted a genome-wide association study of ARHI in 6,527 cases and 45,882 controls among the non-Hispanic whites from the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort. We identified two novel genome-wide significant SNPs: rs4932196 (odds ratio = 1.185, p = 4.0x10-11), 52Kb 3’ of ISG20, which replicated in a meta-analysis of the other GERA race/ethnicity groups (1,025 cases, 12,388 controls, p = 0.00094) and in a UK Biobank case-control analysis (30,802 self-reported cases, 78,586 controls, p = 0.015); and rs58389158 (odds ratio = 1.132, p = 1.8x10-9), which replicated in the UK Biobank (p = 0.00021). The latter SNP lies just outside exon 8 and is highly correlated (r2 = 0.96) with the missense SNP rs5756795 in exon 7 of TRIOBP, a gene previously associated with prelingual nonsyndromic hearing loss. We further tested these SNPs in phenotypes from audiologist notes available on a subset of GERA (4,903 individuals), stratified by case/control status, to construct an independent replication test, and found a significant effect of rs58389158 on speech reception threshold (SRT; overall GERA meta-analysis p = 1.9x10-6). We also tested variants within exons of 132 other previously-identified hearing loss genes, and identified two common additional significant SNPs: rs2877561 (synonymous change in ILDR1, p = 6.2x10-5), which replicated in the UK Biobank (p = 0.00057), and had a significant GERA SRT (p = 0.00019) and speech discrimination score (SDS; p = 0.0019); and rs9493627 (missense change in EYA4, p = 0.00011) which replicated in the UK Biobank (p = 0.0095), other GERA groups (p = 0.0080), and had a consistent significant result for SRT (p = 0.041) and suggestive result for SDS (p = 0.081). Large cohorts with GWAS data and electronic health records may be a useful method to characterize the genetic architecture of ARHI

    Molecular mechanisms of vaspin action: from adipose tissue to skin and bone, from blood  vessels to the brain 

    Get PDF
    Visceral adipose tissue derived serine protease inhibitor (vaspin) or SERPINA12 according to the serpin nomenclature was identified together with other genes and gene products that  were specifically expressed or overexpressed in the intra abdominal or visceral adipose tissue  (AT) of the Otsuka Long-Evans Tokushima fatty rat. These rats spontaneously develop visceral  obesity, insulin resistance, hyperinsulinemia and ‐glycemia, as well as hypertension and thus represent a well suited animal model of obesity and related metabolic disorders such as type  2 diabetes.  The follow-up study reporting the cloning, expression and functional characterization of  vaspin suggested the great and promising potential of this molecule to counteract obesity induced insulin resistance and inflammation and has since initiated over 300 publications, clinical and experimental, that have contributed to uncover the multifaceted functions and molecular mechanisms of vaspin action not only in the adipose, but in many different cells, tissues and organs. This review will give an update on mechanistic and structural aspects of vaspin with a focus on its serpin function, the physiology and regulation of vaspin expression, and will summarize the latest on vaspin function in various tissues such as the different adipose tissue depots as well as the vasculature, skin, bone and the brain

    Introduction

    No full text

    Mouse Cochlear Whole Mount Immunofluorescence

    No full text
    This protocol comprises the entire process of immunofluorescence staining on mouse cochlea whole mount, starting from tissue preparation to the mounting of the tissue. This technique provides “three-dimensional” views of the stained components in order to determine the localization of a protein of interest in the tissue in its natural state and environment

    Development of a porous poly(DL-lactic acid-co-glycolic acid)-based scaffold for mastoid air-cell regeneration

    Get PDF
    Objectives/Hypothesis: To develop a porous, biodegradable scaffold for mastoid air-cell regeneration. Study Design: In vitro development of a temperature-sensitive poly(DL-lactic acid-co-glycolic acid)/poly(ethylene glycol) (PLGA/PEG) scaffold tailored for this application. Methods: Human mastoid bone microstructure and porosity were investigated using micro-computed tomography. PLGA/PEG-alginate scaffolds were developed, and scaffold porosity was assessed. Human bone marrow mesenchymal stem cells (hBM-MSCs) were cultured on the scaffolds in vitro. Scaffolds were loaded with ciprofloxacin, and release of ciprofloxacin over time in vitro was assessed. Results: Porosity of human mastoid bone was measured at 83% with an average pore size of 1.3 mm. PLGA/PEG-alginate scaffold porosity ranged from 43% to 78% depending on the alginate bead content. The hBM-MSCs proliferate on the scaffolds in vitro, and release of ciprofloxacin from the scaffolds was demonstrated over 7 to 10 weeks. Conclusions: The PLGA/PEG-alginate scaffolds developed in this study demonstrate similar structural features to human mastoid bone, support cell growth, and display sustained antibiotic release. These scaffolds may be of potential clinical use in mastoid air-cell regeneration. Further in vivo studies to assess the suitability of PLGA/PEG-alginate scaffolds for this application are required. Key Words: Scaffold, poly(DL-lactic acid-co-glycolic acid), alginate, mastoid, ciprofloxacin. Level of Evidence: N/A
    corecore