201 research outputs found
Una experiencia de formación matemática de maestros usando recursos informáticos
En este trabajo describimos el diseño e implementación de un módulo de clases prácticas en el aula de informática, que se ha llevado a cabo en el programa de formación inicial de maestros de educación primaria en el área de matemáticas de la Universidad de Granada. Analizamos la organización de las sesiones prácticas y el tipo de activida- des basadas en la exploración y análisis de una colección de “applets” sobre aritmética, geometría, medida y estadística. Presentamos también algunos resultados de la experien- cia y unas primeras conclusiones sobre las cuestiones de investigación que plantea la incorporación de las nuevas tecnologías en los procesos de enseñanza y aprendizaje de las matemáticas cuando se realiza en este tipo de escenarios presenciales
When TADs go bad: chromatin structure and nuclear organisation in human disease
Chromatin in the interphase nucleus is organised as a hierarchical series of structural domains, including self-interacting domains called topologically associating domains (TADs). This arrangement is thought to bring enhancers into closer physical proximity with their target genes, which often are located hundreds of kilobases away in linear genomic distance. TADs are demarcated by boundary regions bound by architectural proteins, such as CTCF and cohesin, although much remains to be discovered about the structure and function of these domains. Recent studies of TAD boundaries disrupted in engineered mouse models show that boundary mutations can recapitulate human developmental disorders as a result of aberrant promoter-enhancer interactions in the affected TADs. Similar boundary disruptions in certain cancers can result in oncogene overexpression, and CTCF binding sites at boundaries appear to be hyper-mutated across cancers. Further insights into chromatin organisation, in parallel with accumulating whole genome sequence data for disease cohorts, are likely to yield additional valuable insights into the roles of noncoding sequence variation in human disease
Decision, Sensation, and Habituation: A Multi-Layer Dynamic Field Model for Inhibition of Return
Inhibition of Return (IOR) is one of the most consistent and widely studied effects in experimental psychology. The effect refers to a delayed response to visual stimuli in a cued location after initial priming at that location. This article presents a dynamic field model for IOR. The model describes the evolution of three coupled activation fields. The decision field, inspired by the intermediate layer of the superior colliculus, receives endogenous input and input from a sensory field. The sensory field, inspired by earlier sensory processing, receives exogenous input. Habituation of the sensory field is implemented by a reciprocal coupling with a third field, the habituation field. The model generates IOR because, due to the habituation of the sensory field, the decision field receives a reduced target-induced input in cue-target-compatible situations. The model is consistent with single-unit recordings of neurons of monkeys that perform IOR tasks. Such recordings have revealed that IOR phenomena parallel the activity of neurons in the intermediate layer of the superior colliculus and that neurons in this layer receive reduced input in cue-target-compatible situations. The model is also consistent with behavioral data concerning temporal expectancy effects. In a discussion, the multi-layer dynamic field account of IOR is used to illustrate the broader view that behavior consists of a tuning of the organism to the environment that continuously and concurrently takes place at different spatiotemporal scales
Genetic dissection of the Ptch1 locus to uncover the regulatory mechanisms conferring evolutionary plasticity to a pleiotropic gene
Trabajo presentado en EMBO Workshop The evolution of animal genomes, celebrado en Sevilla (España) del 18 al 21 de septiembre de 2023.Peer reviewe
Endogenous orienting modulates the Simon effect: critical factors in experimental design
Responses are faster when the side of stimulus and response correspond than when they do not correspond, even if stimulus location is irrelevant to the task at hand: the correspondence, spatial compatibility effect, or Simon effect. Generally, it is assumed that an automatically generated spatial code is responsible for this effect, but the precise mechanism underlying the formation of this code is still under dispute. Two major alternatives have been proposed: the referential-coding account, which can be subdivided into a static version and an attention-centered version, and the attention-shift account. These accounts hold clear-cut predictions for attentional cuing experiments. The former would assume a Simon effect irrespective of attentional cuing in its static version, whereas the attention-centered version of the referential-coding account and the attention-shift account would predict a decreased Simon effect on validly as opposed to invalidly cued trials. However, results from previous studies are equivocal to the effects of attentional cuing on the Simon effect. We argue here that attentional cueing reliably modulates the Simon effect if some crucial experimental conditions, mostly relevant for optimizing attentional allocation, are met. Furthermore, we propose that the Simon effect may be better understood within the perspective of supra-modal spatial attention, thereby providing an explanation for observed discrepancies in the literature
The little skate genome and the evolutionary emergence of wing-like fins
Skates are cartilaginous fish whose body plan features enlarged wing-like pectoral fins, enabling them to thrive in benthic environments1,2. However, the molecular underpinnings of this unique trait remain unclear. Here we investigate the origin of this phenotypic innovation by developing the little skate Leucoraja erinacea as a genomically enabled model. Analysis of a high-quality chromosome-scale genome sequence for the little skate shows that it preserves many ancestral jawed vertebrate features compared with other sequenced genomes, including numerous ancient microchromosomes. Combining genome comparisons with extensive regulatory datasets in developing fins—including gene expression, chromatin occupancy and three-dimensional conformation—we find skate-specific genomic rearrangements that alter the three-dimensional regulatory landscape of genes that are involved in the planar cell polarity pathway. Functional inhibition of planar cell polarity signalling resulted in a reduction in anterior fin size, confirming that this pathway is a major contributor to batoid fin morphology. We also identified a fin-specific enhancer that interacts with several hoxa genes, consistent with the redeployment of hox gene expression in anterior pectoral fins, and confirmed its potential to activate transcription in the anterior fin using zebrafish reporter assays. Our findings underscore the central role of genome reorganization and regulatory variation in the evolution of phenotypes, shedding light on the molecular origin of an enigmatic trait
Registered replication report on Fischer, Castel, Dodd, and Pratt (2003)
The attentional spatial-numerical association of response codes (Att-SNARC) effect (Fischer, Castel, Dodd, & Pratt, 2003)—the finding that participants are quicker to detect left-side targets when the targets are preceded by small numbers and quicker to detect right-side targets when they are preceded by large numbers—has been used as evidence for embodied number representations and to support strong claims about the link between number and space (e.g., a mental number line). We attempted to replicate Experiment 2 of Fischer et al. by collecting data from 1,105 participants at 17 labs. Across all 1,105 participants and four interstimulus-interval conditions, the proportion of times the effect we observed was positive (i.e., directionally consistent with the original effect) was .50. Further, the effects we observed both within and across labs were minuscule and incompatible with those observed by Fischer et al. Given this, we conclude that we failed to replicate the effect reported by Fischer et al. In addition, our analysis of several participant-level moderators (finger-counting habits, reading and writing direction, handedness, and mathematics fluency and mathematics anxiety) revealed no substantial moderating effects. Our results indicate that the Att-SNARC effect cannot be used as evidence to support strong claims about the link between number and space
High glycine concentration increases collagen synthesis by articular chondrocytes in vitro: acute glycine deficiency could be an important cause of osteoarthritis
Collagen synthesis is severely diminished in osteoarthritis; thus, enhancing it may help the regeneration of cartilage. This
requires large amounts of glycine, proline and lysine. Previous works of our group have shown that glycine is an essential
amino acid, which must be present in the diet in large amounts to satisfy the demands for collagen synthesis. Other authors
have shown that proline is conditionally essential. In this work we studied the effect of these amino acids on type II collagen
synthesis. Bovine articular chondrocytes were cultured under a wide range of different concentrations of glycine, proline and
lysine. Chondrocytes were characterized by type II collagen immunocytochemistry of confluence monolayer cultures. Cell
growth and viability were assayed by trypan blue dye exclusion method. Type II collagen was measured in the monolayer,
every 48 h for 15 days by ELISA. Increase in concentrations of proline and lysine in the culture medium enhances the synthesis
of type II collagen at low concentrations, but these effects decay before 1.0 mM. Increase of glycine as of 1.0 mM
exceeds these effects and this increase continues more persistently by 60–75%. Since the large effects produced by proline
and lysine are within the physiological range, while the effect of glycine corresponds to a much higher range, these results
demonstrated a severe glycine deficiency for collagen synthesis. Thus, increasing glycine in the diet may well be a strategy
for helping cartilage regeneration by enhancing collagen synthesis, which could contribute to the treatment and prevention
of osteoarthriti
Maslinic Acid, a Natural Triterpene, Induces a Death Receptor-Mediated Apoptotic Mechanism in Caco-2 p53-Deficient Colon Adenocarcinoma Cells
Maslinic acid (MA) is a natural triterpene present in high concentrations in the waxy skin of olives. We have previously reported that MA induces apoptotic cell death via the mitochondrial apoptotic pathway in HT29 colon cancer cells. Here, we show that MA induces apoptosis in Caco-2 colon cancer cells via the extrinsic apoptotic pathway in a dose-dependent manner. MA triggered a series of effects associated with apoptosis, including the cleavage of caspases -8 and -3, and increased the levels of t-Bid within a few hours of its addition to the culture medium. MA had no effect on the expression of the Bax protein, release of cytochrome-c or on the mitochondrial membrane potential. This suggests that MA triggered the extrinsic apoptotic pathway in this cell type, as opposed to the intrinsic pathway found in the HT29 colon-cancer cell line. Our results suggest that the apoptotic mechanism induced in Caco-2 may be different from that found in HT29 colon-cancer cells, and that in Caco-2 cells MA seems to work independently of p53. Natural antitumoral agents capable of activating both the extrinsic and intrinsic apoptotic pathways could be of great use in treating colon-cancer of whatever origin.This study was supported by grants Group BIO 157 from the Technology and Innovation Council of the Andalucian regional government and AGL2006-12210-C03-02/ALI, SAF2005-01627, ISCIII-RTICC (RD06/0020/0046) from the Spanish government and European Union FEDER funds
- …