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Abstract
Chromatin in the interphase nucleus is organised as a hierarchical series of
structural domains, including self-interacting domains called topologically
associating domains (TADs). This arrangement is thought to bring enhancers
into closer physical proximity with their target genes, which often are located
hundreds of kilobases away in linear genomic distance. TADs are demarcated
by boundary regions bound by architectural proteins, such as CTCF and
cohesin, although much remains to be discovered about the structure and
function of these domains. Recent studies of TAD boundaries disrupted in
engineered mouse models show that boundary mutations can recapitulate
human developmental disorders as a result of aberrant promoter-enhancer
interactions in the affected TADs. Similar boundary disruptions in certain
cancers can result in oncogene overexpression, and CTCF binding sites at
boundaries appear to be hyper-mutated across cancers. Further insights into
chromatin organisation, in parallel with accumulating whole genome sequence
data for disease cohorts, are likely to yield additional valuable insights into the
roles of noncoding sequence variation in human disease.
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Introduction
The past decade has seen a series of revolutions in the fields of 
human chromatin structure and regulatory genomics, driven  
largely by novel, high-throughput sequencing-based assays and 
large consortium projects. Projects such as Encyclopedia of  
DNA Elements (ENCODE)1 have produced large datasets delin-
eating the fine-scale landscape of regulatory elements active in 
hundreds of cell types by using chromatin immunoprecipitation 
followed by sequencing (ChIP-seq), DNase I treatment of DNA 
followed by high-throughput sequencing to determine active regu-
latory sites (DNAse-seq), isolation of RNA followed by sequenc-
ing (RNA-seq), and other methods. These data have provided a  
“locus level” view of the regulatory protein binding events and 
modifications to chromatin occurring (generally over tens or hun-
dreds of base pairs) at individual genes. Meanwhile, the devel-
opment of chromatin conformation capture (3C) methods, most 
prominently high-throughput chromosome conformation cap-
ture (Hi-C), has provided a view of the higher-order folding and 
nuclear organisation of human chromosomes2. These data reveal 
a landscape of physically interacting regions (typically separated 
by tens or hundreds of kilobases) along chromosomes and, at a  
larger scale, the existence of preferentially self-interacting chroma-
tin domains, extending across hundreds of kilobases up to multi- 
megabase regions. However, there is no shortage of gaps in our 
present knowledge3. The mechanistic relationships between the 
hierarchical structural layers of the epigenome, from locus-level 
features to higher-order structures and three-dimensional nuclear 
architecture, are still the subject of active research. We also have 
an incomplete picture of how genome functions (such as transcrip-
tion, replication, and repair) are driven or constrained by these 
structures. Beyond this, there has been little evidence for any 
phenotypic consequences of the disruption of the interactions and 
domains emerging from Hi-C experiments. However, a number of 
recent studies have provided new insights into the consequences 
of pathogenic mutations acting to alter domain structures and  
compromise genome function.

The rise of the topologically associating domains
The original 3C method4 and its derivatives—4C, 5C, and  
Hi-C—are used to study in vivo contact frequencies between pairs 
of genomic sequences, revealing the physical arrangement of DNA 
in the nucleus. Hi-C was developed to assess patterns of interac-
tion between all regions of a given size across the entire genome  
simultaneously5. The 3C methods have continued to evolve2, but 
Hi-C was the original high-throughput, genome-wide variant of 
3C and still accounts for the majority of 3C datasets available. The 
earliest low-resolution Hi-C maps showed interactions between 
1 Mb regions, confirming the existence of nuclear compartments  
corresponding to multi-megabase regions within the accessible and 
transcriptionally active “A” compartment and regions within the rel-
atively closed and inactive “B” compartment5. The highest impact of 
such datasets was undoubtedly the discovery of topologically asso-
ciating domains (TADs), thought to represent regulatory domains, 
which contain many preferentially interacting subregions but very 
few interactions across their boundaries. TAD boundaries are often 
defined by relatively simple algorithms, assessing the directional 
(upstream versus downstream) preferences of interactions occur-
ring along a chromosome and defining boundaries where these  

preferences change6. TADs were reported in multiple species as 
structural entities up to around 1 Mb in size in mammals (and 
perhaps half this length in Drosophila) and enriched for interact-
ing promoter-enhancer contacts6–8. These early studies noted the 
association of these domains with varying regional patterns of 
repressive and activating histone modifications across the genome, 
the enrichment of CTCF binding at boundaries, and correlations 
with other aspects of higher-order chromatin organisation, such 
as patterns of association with the nuclear lamina and replication  
timing domains6. About 50% of TADs appear to be cell type 
invariant between embryonic stem cells (ESCs) and the cortex6, 
and domains are often shared across species boundaries6,9. Later 
work showed differing features enriched at boundaries in different 
cell types, and certain enrichments (for example, features associ-
ated with active promoters, CTCF, and YY1 binding) were seen 
across all cell types10. Although CTCF has been intensively studied 
as an insulator protein, it is not enriched or even detectable at all  
boundaries, and so the architecture(s) of TAD boundary regions  
and the mechanism(s) underlying their function remain elusive.

The highest-resolution Hi-C datasets have revealed finer-scale, 
recurrent pairwise interactions between regions, representing  
“chromatin loops”, and the base of each loop is formed by two 
presumably interacting anchor points. Many of these loop anchor 
points appear to be bound by CTCF and cohesin subunits, and a 
majority were found to contain convergently orientated CTCF  
binding motifs11. Since around 60% of CTCF sites are constitu-
tively bound12, a substantial fraction of loops may be present across  
tissues. The same study11 identified many TAD-like “contact 
domains” ranging from 40 Kb to 3 Mb in size (median length of 
185 Kb), suggesting that a small fraction of boundaries were  
missed by previous studies with lower-resolution data. Closer inves-
tigation of Hi-C interaction matrices revealed that TADs appear 
to interact in clusters to form a hierarchy of nested domains, or  
“metaTADs”, at higher levels13. This hierarchy can be modelled 
as a simple tree-like structure, and rearrangements of the tree link 
changes in nuclear organisation to transcriptional changes at many 
promoters during neuronal differentiation—from ESCs via neural  
progenitor cells to neurons. This tree-like model of organisation pro-
vides an intuitive bridge between smaller-scale regulatory domains 
such as TADs and the A and B nuclear compartments13.

A broad structural hierarchy has emerged, from the subgenic, 
locus-level features that can be linked by chromatin loops and  
constrained within TADs up to large nuclear compartment 
domains associated with patterns of transcription, replication, and 
nuclear localisation. Until recently, however, functional studies of  
domains have lagged because of the dearth of experimen-
tal approaches available to manipulate domains and assess the  
phenotypic effects3, and some have questioned whether TAD 
organisation is a cause or consequence of genome function14. As 
for other noncoding genomic sequences, the emphasis is shifting 
from the immediate biochemical roles of these new structural fea-
tures to their phenotypic relevance and how their disruption impacts 
the fitness of real organisms15. Here, we review the latest studies 
of dysregulation of gene expression due to changes in chromatin 
conformation (Figure 1), focussing on developmental genetic dis-
orders and cancer genomics. However, the unifying principle of  
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mis-expression due to aberrant spatial organisation holds across 
somatic and germline mutations and is likely to extend to other 
phenotypes and complex traits.

Chromatin domain lesions in development
Recent studies of particular mouse loci have implicated  
disrupted regulatory architecture in developmental disorders, and 
engineered mouse mutations have been seen to alter TAD bound-
aries and affect the expression of nearby genes16. In a seminal 
study, Lupiáñez et al.17 demonstrated the impact of TAD boundary  
disruption on gene expression in the developing limb bud. Three 
types of human limb malformations were shown to be associated 
with genomic rearrangements near the EHPA4 locus, including 
deletions, duplications, and an inversion affecting the TAD span-
ning the locus. Re-engineering the same rearrangements in mice, 
they found a general pattern of upregulation of genes in neigh-
bouring TADs whose boundaries had been affected. Furthermore, 
these genes were now expressed in a spatiotemporal pattern that 
resembled endogenous Epha4 expression. Using 4C, they showed 

that genes in neighbouring TADs had acquired new interactions 
with the enhancer cluster of Epha4, a scenario named “enhancer 
adoption”18. Interestingly, if the boundary regions were deleted but 
CTCF sites were maintained intact, no such re-wiring of interac-
tions took place, emphasising the special importance of CTCF as a 
boundary element.

The extent of such disruptions in human developmental disease 
cases is largely unknown, but recent studies have shown that  
pathogenic human structural variants (SVs) overlap the boundary 
regions of TADs, including duplications at the SOX9 locus19 and 
deletions at the MEF2C locus20 in certain cases of developmen-
tal disorders. Furthermore, SVs disrupting an orthologous TAD  
boundary (found in human and mouse nuclear organisation) can 
give rise to the same developmental defect19, suggesting a con-
served functional role. A computational study assessed the broader 
importance of copy number variants (CNVs) affecting boundary 
elements on human developmental disorders21. The phenotypes 
of 922 deletion cases recorded in the DECIPHER database22 were 

Figure 1. Schematic diagram of regulatory re-wiring following the deletion of a domain boundary. (A) Interactions between enhancers 
and their target genes occur within chromatin domains. The deletion of a boundary region leads to novel gene-enhancer interactions between 
previously insulated elements; this process may lead to the spatial or temporal mis-expression of genes. (B) The same scenario as in 
(A) is drawn as represented by a high-throughput chromosome conformation capture (Hi-C) interaction map. Red triangles: topologically 
associating domains; yellow boxes: regulatory elements; blue boxes: target genes; green circles: insulator elements. Further examples of 
pathogenic genomic rearrangements, including insulator-spanning tandem duplications, are illustrated in 31.
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related to the known, monogenic diseases associated with genes 
neighbouring the deletions. This information was used to nominate 
deletions likely to affect TAD boundaries and result in enhancer 
adoption. The results suggest that up to about 12% of deletions in 
the DECIPHER database resulted in enhancer adoption, based on 
the tissue-specific activity of a given enhancer and the tissue that 
was affected in the disease phenotype of the patient who carried 
the deletion.

Chromatin domain lesions in cancer
There have been several reports of disruptions of particular  
TAD boundaries in modest numbers of neuroblastoma23,24, medul-
loblastoma25, and leukaemia26,27 samples, consistent with the  
hypothesis that TAD-disrupting SVs may act as oncogenic 
“driver” mutations under selection in tumour cells28. Proposed 
models for such phenomena include (a) deletions of boundaries 
to allow unusual promoter-enhancer contacts and (b) inversions 
that span boundaries altering the contents of neighbouring TADs; 
both mechanisms are thought to give rise to aberrant expression 
of resident genes. It also seems that boundary integrity can be  
compromised by hyper-methylation. Flavahan et al.29 showed 
that gain-of-function mutations in the IDH gene cause hyper- 
methylation of CpG sites as well as the GC-rich CTCF binding 
motif; this reduces CTCF binding at a subset of CTCF sites in 
mutant glioma cells. Genes most upregulated in IDH mutants as 
a result of this hyper-methylation included several known onco-
genes, such as PDGFRA. Furthermore, CRISPR disruption of 
a neighbouring CTCF binding site at a TAD boundary in wild-
type tumours leads to the upregulation of PDGFRA, providing 
mutant cells with a growth advantage and enhancing proliferation.  
Intriguingly, the PDGFRA domain boundary affected by aber-
rant methylation in tumours can be re-established by treating 
mutant glioma cells with a de-methylation agent, leading to the  
downregulation of PDGFRA.

Hnisz et al.27 investigated the impact of domain boundary  
deletions on oncogene activation in T-cell acute lymphoblastic leu-
kaemia (T-ALL). Using ChIA-PET (chromatin interaction analysis 
by paired-end tag sequencing) against cohesin sites, they identified 
around 9,000 CTCF-CTCF interactions that were shared across 
cell lines, demarcating active loop anchor points for “constitutive 
neighbourhoods”. Most genes implicated in T-ALL pathogen-
esis were located inside those loops. Next, they investigated the 
overlaps between cancer deletions (<500 Kb) in a set of T-ALL 
whole genome sequences and these neighbourhood boundaries. Six 
boundaries delineating neighbourhoods containing T-ALL patho-
genesis genes were found to be recurrently deleted across tumours 
at unexpectedly frequent levels. Hnisz et al.27 then showed that the 
CRISPR-engineered deletion of boundaries near two known onco-
genes (TAL1 and LMO2) leads to the activation of these genes in 
human embryonic kidney cells, which otherwise do not express 
these genes. They also demonstrated changes in conformation at 
these boundary regions using 5C, with the intensity of contacts 
increasing across the boundaries following the deletion.

A larger recent study used matched expression and somatic vari-
ation data for 7,416 cancer genomes across 26 tumour types from 
The Cancer Genome Atlas to systematically identify somatic copy 
number alterations (SCNAs) likely to mediate gene dysregulation30. 

They found that recurrent SCNAs deleting a boundary of the TAD 
containing the IRS4 gene were associated with a marked increase 
in IRS4 expression in 32 samples from three different tumour 
types. These deletions were carefully distinguished from samples 
carrying focal amplifications leading to IRS4 overexpression, and 
the tumorigenic effects of higher IRS4 expression were validated  
in vivo using mouse models. Similar to19, the authors also describe 
duplications mediating the formation of a new domain and  
driving overexpression of IGF2 in 20 colorectal cancer (CRC) 
tumours. Single copy tandem duplications encompassing an IGF2 
TAD boundary and an enhancer in a neighbouring TAD were 
found to alter conformation and activate the enhancer in CRC cell 
lines, leading to overexpression of IGF2, a gene previously impli-
cated in CRC progression. Interestingly, all duplications involv-
ing this locus were tandem duplications—rather than dispersed 
or inverted duplications—suggesting that the resulting head- 
to-tail orientation of the enhancer and IGF2 may be crucial for the 
gene’s upregulation31. Overall, these data suggest that enhancer 
adoption by oncogenes following domain boundary lesions is not 
a rare process, occurring at rates comparable to those of recurrent  
in-frame gene fusions.

Disruption of CTCF sites in cancer
CTCF hemizygous knockout mice are prone to developing cancer 
in a wide range of tissues32, consistent with oncogene activation 
following the rearrangement of nuclear architecture. Several recent 
studies have also observed unexpected excesses of somatic muta-
tions at CTCF binding sites across tumour types, including CRC33, 
leukaemia27, and a variety of other cancer types34. Characteristic 
mutational profiles were observed at positions within the CTCF 
binding motif, and a striking spike in mutation was seen at a central, 
well-conserved nucleotide, together with elevated mutation rates at 
sites immediately flanking the motif33,34. Surprisingly, these unusual 
patterns can be explained by selectively neutral biases in mutation 
rates34 and are broadly consistent with an underlying mutational 
mechanism involving the interference of DNA binding proteins 
with the replication machinery, causing elevated mutational burden 
at active regulatory sites35. The highest mutational loads were seen 
at constitutively active CTCF binding sites with roles in chromatin 
loops and TAD domain boundaries and were predicted to compro-
mise CTCF binding and nuclear architecture34. These phenomena 
therefore appear to provide a deterministic mutation-driven proc-
ess, expected to lead to altered chromatin architecture and gene 
dysregulation in many cancers, without invoking more complex 
hypotheses involving similar selective pressures across many sites 
and many different tumour types.

Future challenges
The future will undoubtedly provide many more insights into 
the disruptions of chromatin and nuclear organisation underly-
ing disease. Continuing advances in high-throughput sequencing 
and computational analyses are improving the resolution of Hi-C 
maps and allow greater precision in defining domain boundaries 
and other structures. Global analyses of structural disruptions in 
disease have generally been limited to publicly available Hi-C data, 
which usually are not well matched to the tissue of interest. Simi-
lar caveats apply to the available ChIP-seq data for chromatin fea-
tures such as CTCF binding. With more cell- and tissue-specific 
Hi-C and ChIP-seq data available, many more disease-relevant 
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disrupted interactions are likely to be found. This will also help 
to better distinguish “passenger” disruptions of TAD boundaries 
from causative “driver” mutations responsible for oncogene dys-
regulation. Current cancer whole genome sequencing (WGS) 
datasets are also inadequate for these purposes. Previous studies 
have examined mutational spectra at thousands of CTCF bind-
ing sites across the genome33,34 and are underpowered to discover 
individual CTCF sites subject to recurrent mutation. Similarly, 
most WGS data for tumours lack matched RNA-seq data to study 
the effects of site disruption on the patterns of expression of  
neighbouring genes.

In addition to improvements in the data available, there are sub-
stantial challenges ahead in WGS data analysis. Currently available 
algorithms for the detection of CNVs (that is, deletions and dupli-
cations) are generally used in combinations to generate consensus 
predictions since no single algorithm is considered sufficiently 
accurate when used alone36. More complex SVs, such as inver-
sions and translocations, are even less accurately predicted, and 
compound SVs (involving different overlapping or nested SVs) are 
beyond our reach entirely. This point is highly pertinent to cancer 
genomics since catastrophic rearrangements of entire chromosomes 
are an increasingly common observation in many cancers37, and 
SVs appear to be the main factors driving tumorigenesis in some  
cases38. Given the challenges of reconstructing SVs from stand-
ard (short read) sequencing data, it is likely that accurate resolu-
tion of all SVs present in a genome will be dependent upon novel  
sequencing technologies generating much longer sequence reads 
(for example,39).

As discussed above, our knowledge of the hierarchical strata and 
functional inter-relationships of higher-order chromatin structure 
is still far from complete. Although TADs have been widely stud-
ied, we still lack detailed models of how they affect transcription. 
Sharing a location in the same TAD is evidently not sufficient to 
allow enhancer-promoter interactions to take place, and we do not 
understand how enhancers find their target genes within TADs. 
Some data suggest that a particular spacing may be needed to  
create a loop that successfully brings such elements together, and 

it is known that increasing the distance between an enhancer and 
a target promoter can lead to downregulation40. We also know 
very little about the precise physical location and composition of 
the protein complexes bound to domain boundaries, how the insu-
lating effect of boundaries is achieved, and what constitutes the  
minimal requirements for boundary function. Higher-resolution 
maps derived from Hi-C or related methods will be necessary to 
explore the detailed features of boundary regions. The fact that 
some boundaries appear to lack CTCF binding sites, that many  
TAD boundaries change during cellular differentiation13, and that 
boundary compositions vary between cell types10 suggests that 
boundaries may vary in structure and function. The better-studied  
boundary components, CTCF and cohesin, appear to have dis-
tinct functions in domain formation, in that CTCF works to 
separate neighbouring TADs and cohesin promotes intra-TAD  
interactions41, but even these proteins remain the subject of ongo-
ing research. A comprehensive picture of boundary architecture and 
function holds the promise of better understanding, and perhaps 
correcting, regulatory domain disruptions in disease.
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