16 research outputs found

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    BACE1 Regulates Hippocampal Astrogenesis via the Jagged1-Notch Pathway

    Get PDF
    BACE1 is the sole secretase for generating β-amyloid (Aβ) in vivo and is being actively pursued as a drug target for the treatment of Alzheimer’s disease. Transmembrane BACE1 exerts its biological activity by cleaving its membrane-bound cellular substrates. Here, we reveal that BACE1 directly regulates the level of membrane-anchored full-length Jagged1 (Jag1), a signaling molecule important for the control of neurogenesis and astrogenesis, via interaction with its cognate Notch receptor. We show that shedding of Jag1 is reduced in BACE1 null mice and upregulated Jag1 enhances Notch signaling via cell-cell juxtacrine interactions. Additional biochemical assays confirmed that overexpression of BACE1 enhanced cleavage of Jag1. Consequently, BACE1 null mice exhibit a significant increase in astrogenesis with a corresponding decrease in neurogenesis in their hippocampi during early development. Hence, BACE1 appears to function as a signaling protease that controls the balance of neurogenesis and astrogenesis via the Jag1-Notch pathway

    The stability of P2-layered sodium transition metal oxides in ambient atmospheres

    No full text
    Air-stability is a critical challenge faced by layered sodium transition metal oxide cathodes. Here, the authors depict a general and in-depth model of the structural/chemical evolution of P2-type layered oxides in air and propose an evaluation rule for the air-stability of layered sodium cathodes

    Ca

    No full text
    From PubMed via Jisc Publications RouterHistory: received 2018-07-24, revised 2019-05-04, accepted 2019-05-12Publication status: aheadofprintCelastrol exhibits anti-arthritic effect in rheumatoid arthritis (RA), but the role of celastrol-mediated Ca mobilization in treatment of RA remains unelucidated. Here, we illustrate the regulatory role of celastrol-induced Ca signalling in synovial fibroblasts of RA patients and adjuvant-induced arthritis (AIA) in rats. Molecular target of celastrol was determined by computational docking, Ca dynamic and functional assays on SERCA. Ca -mediated autophagy in RASFs/RAFLS and the underlying mechanism were verified by quantification of endogenous LC3-II puncta, immunoblotting, and flow cytometry with the Ca chelator (BAPTA/AM) or suitable inhibitors. The anti-arthritic effect of celastrol, autophagy induction and growth rate of synovial fibroblasts in AIA rats were monitored by microCT and immunofluorescence staining. mRNA from joint tissues of AIA rats was isolated for transcriptional analysis of inflammatory genes. The role of Ca in regulating the identified genes was investigated by knockdown of calmodulin, calpains, and calcineurin. Celastrol inhibited SERCA to induce autophagy-dependent cytotoxicity in RASFs/RAFLS via CaMKKβ-AMPK-mTOR pathway and repressed arthritis symptoms in AIA rats. BAPTA/AM hampered the in vitro and in vivo effectiveness of celastrol. Inflammatory- and autoimmunity-associated genes downregulated by celastrol in joint tissues of AIA rat were restored by BAPTA/AM. Knockdown of calmodulin, calpains, and calcineurin in RAFLS confirmed the role of Ca in celastrol-regulated gene expression. Celastrol triggered Ca signalling to induce autophagic cell death in RASFs/RAFLS and ameliorated arthritis in AIA rats mediated by calcium-dependent/-binding proteins facilitating the exploitation of anti-arthritic drugs based on manipulation of Ca signalling. [Abstract copyright: This article is protected by copyright. All rights reserved.
    corecore