103 research outputs found

    Estimation of trace gas fluxes with objectively determined basis functions using reversible-jump Markov chain Monte Carlo

    Get PDF
    Atmospheric trace gas inversions often attempt to attribute fluxes to a high-dimensional grid using observations. To make this problem computationally feasible, and to reduce the degree of under-determination, some form of dimension reduction is usually performed. Here, we present an objective method for reducing the spatial dimension of the parameter space in atmospheric trace gas inversions. In addition to solving for a set of unknowns that govern emissions of a trace gas, we set out a framework that considers the number of unknowns to itself be an unknown. We rely on the well-established reversible-jump Markov chain Monte Carlo algorithm to use the data to determine the dimension of the parameter space. This framework provides a single-step process that solves for both the resolution of the inversion grid, as well as the magnitude of fluxes from this grid. Therefore, the uncertainty that surrounds the choice of aggregation is accounted for in the posterior parameter distribution. The posterior distribution of this transdimensional Markov chain provides a naturally smoothed solution, formed from an ensemble of coarser partitions of the spatial domain. We describe the form of the reversible-jump algorithm and how it may be applied to trace gas inversions. We build the system into a hierarchical Bayesian framework in which other unknown factors, such as the magnitude of the model uncertainty, can also be explored. A pseudo-data example is used to show the usefulness of this approach when compared to a subjectively chosen partitioning of a spatial domain. An inversion using real data is also shown to illustrate the scales at which the data allow for methane emissions over north-west Europe to be resolved

    Phenology is the dominant control of methane emissions in a tropical non-forested wetland

    Get PDF
    Tropical wetlands are a significant source of atmospheric methane (CH4), but their importance to the global CH4 budget is uncertain due to a paucity of direct observations. Net wetland emissions result from complex interactions and co-variation between microbial production and oxidation in the soil, and transport to the atmosphere. Here we show that phenology is the overarching control of net CH4 emissions to the atmosphere from a permanent, vegetated tropical swamp in the Okavango Delta, Botswana, and we find that vegetative processes modulate net CH4 emissions at sub-daily to inter-annual timescales. Without considering the role played by papyrus on regulating the efflux of CH4 to the atmosphere, the annual budget for the entire Okavango Delta, would be under- or over-estimated by a factor of two. Our measurements demonstrate the importance of including vegetative processes such as phenological cycles into wetlands emission budgets of CH4

    UK greenhouse gas measurements at two new tall towers for aiding emissions verification

    Get PDF
    Abstract. Under the UK focused Greenhouse gAs and Uk and Global Emissions (GAUGE) project, two new tall tower greenhouse gas (GHG) observation sites were established in the 2013/2014 Northern Hemispheric winter. These sites were located at two existing telecommunications towers, Heathfield (HFD) and Bilsdale (BSD), utilised a combination of cavity ring-down spectroscopy (CRDS) and gas chromatography (GC) to measure key GHGs (CO2, CH4, CO, N2O and SF6). Measurements were made at multiple intake heights on each tower. The inclusion of the two additional tower stations within the existing UK Deriving Emissions linked to Climate Change (DECC) network of four stations was found to reduce the uncertainty of CH4 UK emission estimates by between 10–20 %. CO2 and CH4 dry mole fractions were calculated from either CRDS measurements of wet air which were post corrected with an instrument specific empirical correction or samples dried to between 0.05 and 0.3 % H2O using a Nafion dryer, with a smaller correction applied for the residual H2O. The impact of these two drying strategies was examined. Drying with a Nafion drier was not found to have a significant effect on the observed CH4 mole fraction; however, Nafion drying did cause a 0.02 µmol mol−1 CO2 bias. This bias was stable with sample CO2 mole fractions between 373 and 514 µmol mol−1 and for sample H2O up to 3.5 %. As the calibration and standard gases are treated in the same manner, this error is mostly calibrated out with the residual error below the World Meteorological Organization’s (WMO) reproducibility requirements. Of more concern was the error associated with both default factory and empirical instrument specific water correction algorithms. These corrections are relatively stable and reproducible for samples with H2O between 0.2 and 2.5 %, CO2 between 345 and 449 µmol mol−1 and CH4 between 1743 and 2145 nmol mol−1. However, the residual errors in these corrections increase to &gt; 0.05 µmol mol−1 for CO2 and &gt; 1 nmol mol−1 for CH4 (greater than the WMO internal reproducibility guidelines) at higher humidities and for samples with very low ( </jats:p

    Evaluation of wetland CH4 in the Joint UK Land Environment Simulator (JULES) land surface model using satellite observations

    Get PDF
    Wetlands are the largest natural source of methane. The ability to model the emissions of methane from natural wetlands accurately is critical to our understanding of the global methane budget and how it may change under future climate scenarios. The simulation of wetland methane emissions involves a complicated system of meteorological drivers coupled to hydrological and biogeochemical processes. The Joint UK Land Environment Simulator (JULES) is a process-based land surface model that underpins the UK Earth System Model (UKESM) and is capable of generating estimates of wetland methane emissions. In this study, we use GOSAT satellite observations of atmospheric methane along with the TOMCAT global 3-D chemistry transport model to evaluate the performance of JULES in reproducing the seasonal cycle of methane over a wide range of tropical wetlands. By using an ensemble of JULES simulations with differing input data and process configurations, we investigate the relative importance of the meteorological driving data, the vegetation, the temperature dependency of wetland methane production and the wetland extent. We find that JULES typically performs well in replicating the observed methane seasonal cycle. We calculate correlation coefficients to the observed seasonal cycle of between 0.58 and 0.88 for most regions; however, the seasonal cycle amplitude is typically underestimated (by between 1.8 and 19.5 ppb). This level of performance is comparable to that typically provided by state-of-the-art data-driven wetland CH4 emission inventories. The meteorological driving data are found to be the most significant factor in determining the ensemble performance, with temperature dependency and vegetation having moderate effects. We find that neither wetland extent configuration outperforms the other, but this does lead to poor performance in some regions. We focus in detail on three African wetland regions (Sudd, Southern Africa and Congo) where we find the performance of JULES to be poor and explore the reasons for this in detail. We find that neither wetland extent configuration used is sufficient in representing the wetland distribution in these regions (underestimating the wetland seasonal cycle amplitude by 11.1, 19.5 and 10.1 ppb respectively, with correlation coefficients of 0.23, 0.01 and 0.31). We employ the Catchment-based Macro-scale Floodplain (CaMa-Flood) model to explicitly represent river and floodplain water dynamics and find that these JULES-CaMa-Flood simulations are capable of providing a wetland extent that is more consistent with observations in this regions, highlighting this as an important area for future model development.</p

    Quantifying the UK's carbon dioxide flux: An atmospheric inverse modelling approach using a regional measurement network

    Get PDF
    We present a method to derive atmosphericobservation-based estimates of carbon dioxide (CO 2 ) fluxes at the national scale, demonstrated using data from a network of surface tall-tower sites across the UK and Ireland over the period 2013-2014. The inversion is carried out using simulations from a Lagrangian chemical transport model and an innovative hierarchical Bayesian Markov chain Monte Carlo (MCMC) framework, which addresses some of the traditional problems faced by inverse modelling studies, such as subjectivity in the specification of model and prior uncertainties. Biospheric fluxes related to gross primary productivity and terrestrial ecosystem respiration are solved separately in the inversion and then combined a posteriori to determine net ecosystem exchange of CO 2 . Two different models, Data Assimilation Linked Ecosystem Carbon (DALEC) and Joint UK Land Environment Simulator (JULES), provide prior estimates for these fluxes. We carry out separate inversions to assess the impact of these different priors on the posterior flux estimates and evaluate the differences between the prior and posterior estimates in terms of missing model components. The Numerical Atmospheric dispersion Modelling Environment (NAME) is used to relate fluxes to the measurements taken across the regional network. Posterior CO2 estimates from the two inversions agree within estimated uncertainties, despite large differences in the prior fluxes from the different models. With our method, averaging results from 2013 and 2014, we find a total annual net biospheric flux for the UK of 8±79 TgCO 2 yr -1 (DALEC prior) and 64±85 TgCO 2 yr -1 (JULES prior), where negative values represent an uptake of CO 2 . These biospheric CO 2 estimates show that annual UK biospheric sources and sinks are roughly in balance. These annual mean estimates consistently indicate a greater net release of CO 2 than the prior estimates, which show much more pronounced uptake in summer months

    JWST Pathfinder Telescope Risk Reduction Cryo Test Program

    Get PDF
    In 2014, the Optical Ground Support Equipment was integrated into the large cryo vacuum chamber at Johnson Space Center (JSC) and an initial Chamber Commissioning Test was completed. This insured that the support equipment was ready for the three Pathfinder telescope cryo tests. The Pathfinder telescope which consists of two primary mirror segment assemblies and the secondary mirror was delivered to JSC in February 2015 in support of this critical risk reduction test program prior to the flight hardware. This paper will detail the Chamber Commissioning and first optical test of the JWST Pathfinder telescope
    • …
    corecore