115 research outputs found

    N-glycans of Human Protein C Inhibitor: Tissue-Specific Expression and Function

    Get PDF
    Protein C inhibitor (PCI) is a serpin type of serine protease inhibitor that is found in many tissues and fluids in human, including blood plasma, seminal plasma and urine. This inhibitor displays an unusually broad protease specificity compared with other serpins. Previous studies have shown that the N-glycan(s) and the NH2-terminus affect some blood-related functions of PCI. In this study, we have for the first time determined the N-glycan profile of seminal plasma PCI, by mass spectrometry. The N-glycan structures differed markedly compared with those of both blood-derived and urinary PCI, providing evidence that the N-glycans of PCI are expressed in a tissue-specific manner. The most abundant structure (m/z 2592.9) had a composition of Fuc3Hex5HexNAc4, consistent with a core fucosylated bi-antennary glycan with terminal Lewisx. A major serine protease in semen, prostate specific antigen (PSA), was used to evaluate the effects of N-glycans and the NH2-terminus on a PCI function related to the reproductive tract. Second-order rate constants for PSA inhibition by PCI were 4.3±0.2 and 4.1±0.5 M−1s−1 for the natural full-length PCI and a form lacking six amino acids at the NH2-terminus, respectively, whereas these constants were 4.8±0.1 and 29±7 M−1s−1 for the corresponding PNGase F-treated forms. The 7–8-fold higher rate constants obtained when both the N-glycans and the NH2-terminus had been removed suggest that these structures jointly affect the rate of PSA inhibition, presumably by together hindering conformational changes of PCI required to bind to the catalytic pocket of PSA

    Positive Selection Shaped the Convergent Evolution of Independently Expanded Kallikrein Subfamilies Expressed in Mouse and Rat Saliva Proteomes

    Get PDF
    We performed proteomics studies of salivas from the genome mouse (C57BL/6 strain) and the genome rat (BN/SsNHsd/Mcwi strain). Our goal was to identify salivary proteins with one or more of three characteristics that may indicate that they have been involved in adaptation: 1) rapid expansion of their gene families; 2) footprints of positive selection; and/or 3) sex-limited expression. The results of our proteomics studies allow direct comparison of the proteins expressed and their levels between the sexes of the two rodent species. Twelve members of the Mus musculus species-specific kallikrein subfamily Klk1b showed sex-limited expression in the mouse saliva proteomes. By contrast, we did not find any of the Rattus norvegicus species-specific kallikrein subfamily Klk1c proteins in male or female genome rat, nor transcripts in their submandibular glands. On the other hand, we detected expression of this family as transcripts in the submandibular glands of both sexes of Sprague-Dawley rats. Using the CODEML program in the PAML package, we demonstrate that the two rodent kallikrein subfamilies have apparently evolved rapidly under the influence of positive selection that continually remodeled the amino acid sites on the same face in the members of the subfamilies. Thus, although their kallikrein subfamily expansions were independent, this evolutionary pattern has occurred in parallel in the two rodent species, suggesting a form of convergent evolution at the molecular level. On the basis of this new data, we suggest that the previous speculative function of the species-specific rodent kallikreins as important solely in wound healing in males be investigated further. In addition to or instead of that function, we propose that their sex-limited expression, coupled with their rapid evolution may be clues to an as-yet-undetermined interaction between the sexes

    Evolutionary History of Tissue Kallikreins

    Get PDF
    The gene family of human kallikrein-related peptidases (KLKs) encodes proteins with diverse and pleiotropic functions in normal physiology as well as in disease states. Currently, the most widely known KLK is KLK3 or prostate-specific antigen (PSA) that has applications in clinical diagnosis and monitoring of prostate cancer. The KLK gene family encompasses the largest contiguous cluster of serine proteases in humans which is not interrupted by non-KLK genes. This exceptional and unique characteristic of KLKs makes them ideal for evolutionary studies aiming to infer the direction and timing of gene duplication events. Previous studies on the evolution of KLKs were restricted to mammals and the emergence of KLKs was suggested about 150 million years ago (mya). In order to elucidate the evolutionary history of KLKs, we performed comprehensive phylogenetic analyses of KLK homologous proteins in multiple genomes including those that have been completed recently. Interestingly, we were able to identify novel reptilian, avian and amphibian KLK members which allowed us to trace the emergence of KLKs 330 mya. We suggest that a series of duplication and mutation events gave rise to the KLK gene family. The prominent feature of the KLK family is that it consists of tandemly and uninterruptedly arrayed genes in all species under investigation. The chromosomal co-localization in a single cluster distinguishes KLKs from trypsin and other trypsin-like proteases which are spread in different genetic loci. All the defining features of the KLKs were further found to be conserved in the novel KLK protein sequences. The study of this unique family will further assist in selecting new model organisms for functional studies of proteolytic pathways involving KLKs

    Recovery of ζ-chain expression and changes in spontaneous IL-10 production after PSA-based vaccines in patients with prostate cancer

    Get PDF
    Circulating T lymphocytes of patients with prostate cancer have been reported to have functional deficits, including low or absent ζ-chain expression. To determine whether these functional impairments could be reversed by prostate specific antigen-based vaccination therapy, 10 patients treated with recombinant human prostate specific antigen plus GM-CSF and eight others receiving prostate specific antigen plus oil emulsion in two pilot clinical trials were evaluated prior to and after vaccination for several immunologic end points, including ζ-chain expression and cytokine production by circulating T cells as well as the frequency of T cells able to respond to prostate specific antigen in ELISPOT assays. The flow cytometry assay for ζ-chain expression was standardized to allow for a reliable comparison of pre- vs post-vaccination samples. Prior to therapy, the patients were found to have significantly lower ζ-chain expression in circulating CD3+ cells and a higher percentage of ζ-chain negative CD3+ and CD4+ cells than normal donors. The patients' peripheral blood mononuclear cells spontaneously produced more IL-10 ex vivo than those of normal controls. After vaccination, recovery of ζ-chain expression was observed in 50% of patients in both clinical trials. Also, spontaneous IL-10 secretion by peripheral blood mononuclear cells decreased following immunotherapy in patients treated with prostate specific antigen and GM-CSF. The frequency of prostate specific antigen-reactive T cells was detectable in 7 out of 18 patients vs 4 out of 18 patients prior to vaccination. Only one of 18 patients was a clinical responder. The vaccine had stimulatory effects on the patients' immune system, but post-vaccine immune recovery could not be correlated to progression-free survival in this small cohort of patients with prostate cancer

    Exogenous Visual Orienting Is Associated with Specific Neurotransmitter Genetic Markers: A Population-Based Genetic Association Study

    Get PDF
    Background: Currently, there is a sense that the spatial orienting of attention is related to genotypic variations in cholinergic genes but not to variations in dopaminergic genes. However, reexamination of associations with both cholinergic and dopaminergic genes is warranted because previous studies used endogenous rather than exogenous cues and costs and benefits were not analyzed separately. Examining costs (increases in response time following an invalid precue) and benefits (decreases in response time following a valid pre-cue) separately could be important if dopaminergic genes (implicated in disorders such as attention deficit disorder) independently influence the different processes of orienting (e.g., disengage, move, engage). Methodology/Principal Findings: We tested normal subjects (N = 161) between 18 and 61 years. Participants completed a computer task in which pre-cues preceded the presence of a target. Subjects responded (with a key press) to the location of the target (right versus left of fixation). The cues could be valid (i.e., appear where the target would appear) or invalid (appear contralateral to where the target would appear). DNA sequencing assays were performed on buccal cells to genotype known genetic markers and these were examined for association with task scores. Here we show significant associations between visual orienting and genetic markers (on COMT, DAT1, and APOE; R 2 s from 4 % to 9%). Conclusions/Significance: One measure in particular – the response time cost of a single dim, invalid cue – was associate

    Protein-Binding Microarray Analysis of Tumor Suppressor AP2α Target Gene Specificity

    Get PDF
    Cheap and massively parallel methods to assess the DNA-binding specificity of transcription factors are actively sought, given their prominent regulatory role in cellular processes and diseases. Here we evaluated the use of protein-binding microarrays (PBM) to probe the association of the tumor suppressor AP2α with 6000 human genomic DNA regulatory sequences. We show that the PBM provides accurate relative binding affinities when compared to quantitative surface plasmon resonance assays. A PBM-based study of human healthy and breast tumor tissue extracts allowed the identification of previously unknown AP2α target genes and it revealed genes whose direct or indirect interactions with AP2α are affected in the diseased tissues. AP2α binding and regulation was confirmed experimentally in human carcinoma cells for novel target genes involved in tumor progression and resistance to chemotherapeutics, providing a molecular interpretation of AP2α role in cancer chemoresistance. Overall, we conclude that this approach provides quantitative and accurate assays of the specificity and activity of tumor suppressor and oncogenic proteins in clinical samples, interfacing genomic and proteomic assays

    Congruence of tissue expression profiles from Gene Expression Atlas, SAGEmap and TissueInfo databases

    Get PDF
    BACKGROUND: Extracting biological knowledge from large amounts of gene expression information deposited in public databases is a major challenge of the postgenomic era. Additional insights may be derived by data integration and cross-platform comparisons of expression profiles. However, database meta-analysis is complicated by differences in experimental technologies, data post-processing, database formats, and inconsistent gene and sample annotation. RESULTS: We have analysed expression profiles from three public databases: Gene Expression Atlas, SAGEmap and TissueInfo. These are repositories of oligonucleotide microarray, Serial Analysis of Gene Expression and Expressed Sequence Tag human gene expression data respectively. We devised a method, Preferential Expression Measure, to identify genes that are significantly over- or under-expressed in any given tissue. We examined intra- and inter-database consistency of Preferential Expression Measures. There was good correlation between replicate experiments of oligonucleotide microarray data, but there was less coherence in expression profiles as measured by Serial Analysis of Gene Expression and Expressed Sequence Tag counts. We investigated inter-database correlations for six tissue categories, for which data were present in the three databases. Significant positive correlations were found for brain, prostate and vascular endothelium but not for ovary, kidney, and pancreas. CONCLUSION: We show that data from Gene Expression Atlas, SAGEmap and TissueInfo can be integrated using the UniGene gene index, and that expression profiles correlate relatively well when large numbers of tags are available or when tissue cellular composition is simple. Finally, in the case of brain, we demonstrate that when PEM values show good correlation, predictions of tissue-specific expression based on integrated data are very accurate

    Identification of ejaculated proteins in the house mouse (Mus domesticus) via isotopic labeling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Seminal fluid plays an important role in successful fertilization, but knowledge of the full suite of proteins transferred from males to females during copulation is incomplete. The list of ejaculated proteins remains particularly scant in one of the best-studied mammalian systems, the house mouse (<it>Mus domesticus</it>), where artificial ejaculation techniques have proven inadequate. Here we investigate an alternative method for identifying ejaculated proteins, by isotopically labeling females with <sup>15</sup>N and then mating them to unlabeled, vasectomized males. Proteins were then isolated from mated females and identified using mass spectrometry. In addition to gaining insights into possible functions and fates of ejaculated proteins, our study serves as proof of concept that isotopic labeling is a powerful means to study reproductive proteins.</p> <p>Results</p> <p>We identified 69 male-derived proteins from the female reproductive tract following copulation. More than a third of all spectra detected mapped to just seven genes known to be structurally important in the formation of the copulatory plug, a hard coagulum that forms shortly after mating. Seminal fluid is significantly enriched for proteins that function in protection from oxidative stress and endopeptidase inhibition. Females, on the other hand, produce endopeptidases in response to mating. The 69 ejaculated proteins evolve significantly more rapidly than other proteins that we previously identified directly from dissection of the male reproductive tract.</p> <p>Conclusion</p> <p>Our study attempts to comprehensively identify the proteins transferred from males to females during mating, expanding the application of isotopic labeling to mammalian reproductive genomics. This technique opens the way to the targeted monitoring of the fate of ejaculated proteins as they incubate in the female reproductive tract.</p

    Quantifying Sources of Variability in Infancy Research Using the Infant-Directed-Speech Preference

    Get PDF
    Psychological scientists have become increasingly concerned with issues related to methodology and replicability, and infancy researchers in particular face specific challenges related to replicability: For example, high-powered studies are difficult to conduct, testing conditions vary across labs, and different labs have access to different infant populations. Addressing these concerns, we report on a large-scale, multisite study aimed at (a) assessing the overall replicability of a single theoretically important phenomenon and (b) examining methodological, cultural, and developmental moderators. We focus on infants’ preference for infant-directed speech (IDS) over adult-directed speech (ADS). Stimuli of mothers speaking to their infants and to an adult in North American English were created using seminaturalistic laboratory-based audio recordings. Infants’ relative preference for IDS and ADS was assessed across 67 laboratories in North America, Europe, Australia, and Asia using the three common methods for measuring infants’ discrimination (head-turn preference, central fixation, and eye tracking). The overall meta-analytic effect size (Cohen’s d) was 0.35, 95% confidence interval = [0.29, 0.42], which was reliably above zero but smaller than the meta-analytic mean computed from previous literature (0.67). The IDS preference was significantly stronger in older children, in those children for whom the stimuli matched their native language and dialect, and in data from labs using the head-turn preference procedure. Together, these findings replicate the IDS preference but suggest that its magnitude is modulated by development, native-language experience, and testing procedure
    • 

    corecore