2,113 research outputs found

    Winter−spring transition in the subarctic Atlantic: microbial response to deep mixing and pre-bloom production

    Get PDF
    In temperate, subpolar and polar marine systems, the classical perception is that diatoms initiate the spring bloom and thereby mark the beginning of the productive season. Contrary to this view, we document an active microbial food web dominated by pico- and nanoplankton prior to the diatom bloom, a period with excess nutrients and deep convection of the water column. During repeated visits to stations in the deep Iceland and Norwegian basins and the shallow Shetland Shelf (26 March to 29 April 2012), we investigated the succession and dynamics of photosynthetic and heterotrophic microorganisms. We observed that the early phytoplankton production was followed by a decrease in the carbon:nitrogen ratio of the dissolved organic matter in the deep mixed stations, an increase in heterotrophic prokaryote (bacteria) abundance and activity (indicated by the high nucleic acid:low nucleic acid bacteria ratio), and an increase in abundance and size of heterotrophic protists. The major chl a contribution in the early winter-spring transition was found in the fraction 50 µm) were stimulated by deep mixing later in the period, while picophytoplankton were unaffected by mixing; both physical and biological reasons for this development are discussed herein

    Pneumatosis intestinalis versus pseudo-pneumatosis: review of CT findings and differentiation

    Get PDF
    Pneumatosis intestinalis is defined as the presence of gas within the wall of the gastrointestinal tract. Originally described on plain abdominal radiographs, it is an imaging sign rather than a specific diagnosis and it is associated with both benign and life-threatening clinical conditions. The most common life-threatening cause of pneumatosis intestinalis is bowel ischaemia. Computed tomography (CT) is usually requested to detect underlying disease. The presence of pneumatosis intestinalis often leads physicians to make a diagnosis of serious disease. However, an erroneous diagnosis of pneumatosis intestinalis may be made (i.e. pseudo-pneumatosis) when intraluminal beads of gas are trapped within or between faeces and adjacent mucosal folds. The purpose of this pictorial essay is to review and describe the CT imaging findings of pneumatosis and pseudo-pneumatosis intestinalis and to discuss key discriminatory imaging features

    Enhancing the efficacy of cytotoxic agents for cancer therapy using photochemical internalisation.

    Get PDF
    Photochemical internalisation (PCI) is a technique for improving cellular delivery of certain bioactive agents which are prone to sequestration within endolysosomes. There is a wide range of agents suitable for PCI-based delivery including toxins, oligonucleotides, genes and immunoconjugates which demonstrates the versatility of this technique. The basic mechanism of PCI involves triggering release of the agent from endolysosomes within the target cells using a photosensitiser which is selectively retained with the endolysosomal membranes. Excitation of the photosensitiser by visible light leads to disruption of the membranes via photooxidative damage thereby releasing the agent into the cytosol. This treatment enables the drugs to reach their intended subcellular target more efficiently and improves their efficacy. In this review we summarise the applications of this technique with the main emphasis placed on cancer chemotherapy

    B Cells Regulate Neutrophilia during Mycobacterium tuberculosis Infection and BCG Vaccination by Modulating the Interleukin-17 Response

    Get PDF
    We have previously demonstrated that B cells can shape the immune response to Mycobacterium tuberculosis, including the level of neutrophil infiltration and granulomatous inflammation at the site of infection. The present study examined the mechanisms by which B cells regulate the host neutrophilic response upon exposure to mycobacteria and how neutrophilia may influence vaccine efficacy. To address these questions, a murine aerosol infection tuberculosis (TB) model and an intradermal (ID) ear BCG immunization mouse model, involving both the μMT strain and B cell-depleted C57BL/6 mice, were used. IL (interleukin)-17 neutralization and neutrophil depletion experiments using these systems provide evidence that B cells can regulate neutrophilia by modulating the IL-17 response during M. tuberculosis infection and BCG immunization. Exuberant neutrophilia at the site of immunization in B cell-deficient mice adversely affects dendritic cell (DC) migration to the draining lymph nodes and attenuates the development of the vaccine-induced Th1 response. The results suggest that B cells are required for the development of optimal protective anti-TB immunity upon BCG vaccination by regulating the IL-17/neutrophilic response. Administration of sera derived from M. tuberculosis-infected C57BL/6 wild-type mice reverses the lung neutrophilia phenotype in tuberculous μMT mice. Together, these observations provide insight into the mechanisms by which B cells and humoral immunity modulate vaccine-induced Th1 response and regulate neutrophila during M. tuberculosis infection and BCG immunization. © 2013 Kozakiewicz et al

    HLA Class I Binding 9mer Peptides from Influenza A Virus Induce CD4+ T Cell Responses

    Get PDF
    BACKGROUND: Identification of human leukocyte antigen class I (HLA-I) restricted cytotoxic T cell (CTL) epitopes from influenza virus is of importance for the development of new effective peptide-based vaccines. METHODOLOGY/PRINCIPAL FINDINGS: In the present work, bioinformatics was used to predict 9mer peptides derived from available influenza A viral proteins with binding affinity for at least one of the 12 HLA-I supertypes. The predicted peptides were then selected in a way that ensured maximal coverage of the available influenza A strains. One hundred and thirty one peptides were synthesized and their binding affinities for the HLA-I supertypes were measured in a biochemical assay. Influenza-specific T cell responses towards the peptides were quantified using IFNgamma ELISPOT assays with peripheral blood mononuclear cells (PBMC) from adult healthy HLA-I typed donors as responder cells. Of the 131 peptides, 21 were found to induce T cell responses in 19 donors. In the ELISPOT assay, five peptides induced responses that could be totally blocked by the pan-specific anti-HLA-I antibody W6/32, whereas 15 peptides induced responses that could be completely blocked in the presence of the pan-specific anti-HLA class II (HLA-II) antibody IVA12. Blocking of HLA-II subtype reactivity revealed that 8 and 6 peptide responses were blocked by anti-HLA-DR and -DP antibodies, respectively. Peptide reactivity of PBMC depleted of CD4(+) or CD8(+) T cells prior to the ELISPOT culture revealed that effectors are either CD4(+) (the majority of reactivities) or CD8(+) T cells, never a mixture of these subsets. Three of the peptides, recognized by CD4(+) T cells showed binding to recombinant DRA1*0101/DRB1*0401 or DRA1*0101/DRB5*0101 molecules in a recently developed biochemical assay. CONCLUSIONS/SIGNIFICANCE: HLA-I binding 9mer influenza virus-derived peptides induce in many cases CD4(+) T cell responses restricted by HLA-II molecules

    Tidal Dissipation in the Early Eocene and Implications for Ocean Mixing

    Get PDF
    The tidally driven vertical diffusivity in the abyssal ocean during the early Eocene (55 Ma) is investigated using an established tidal model. A weak tide is predicted in the Eocene ocean, except in the Pacific. Consequently, the integrated global tidal dissipation rate is a mere 1.44TW, of which 40% dissipate in the Pacific. However, due to a stronger abyssal vertical stratification the predicted Eocene vertical diffusivities are consistently larger than at present. The results support the hypothesis that altered tidal dissipation may play a role in explaining the maintenance of past climate regimes, especially the anomalously warm temperatures in the southwest Pacific in the Eocene, and the low dissipation rates may be important for lunar evolution history

    Quantitative predictions of peptide binding to any HLA-DR molecule of known sequence: NetMHCIIpan

    Get PDF
    CD4 positive T helper cells control many aspects of specific immunity. These cells are specific for peptides derived from protein antigens and presented by molecules of the extremely polymorphic major histocompatibility complex (MHC) class II system. The identification of peptides that bind to MHC class II molecules is therefore of pivotal importance for rational discovery of immune epitopes. HLA-DR is a prominent example of a human MHC class II. Here, we present a method, NetMHCIIpan, that allows for pan-specific predictions of peptide binding to any HLA-DR molecule of known sequence. The method is derived from a large compilation of quantitative HLA-DR binding events covering 14 of the more than 500 known HLA-DR alleles. Taking both peptide and HLA sequence information into account, the method can generalize and predict peptide binding also for HLA-DR molecules where experimental data is absent. Validation of the method includes identification of endogenously derived HLA class II ligands, cross-validation, leave-one-molecule-out, and binding motif identification for hitherto uncharacterized HLA-DR molecules. The validation shows that the method can successfully predict binding for HLA-DR molecules-even in the absence of specific data for the particular molecule in question. Moreover, when compared to TEPITOPE, currently the only other publicly available prediction method aiming at providing broad HLA-DR allelic coverage, NetMHCIIpan performs equivalently for alleles included in the training of TEPITOPE while outperforming TEPITOPE on novel alleles. We propose that the method can be used to identify those hitherto uncharacterized alleles, which should be addressed experimentally in future updates of the method to cover the polymorphism of HLA-DR most efficiently. We thus conclude that the presented method meets the challenge of keeping up with the MHC polymorphism discovery rate and that it can be used to sample the MHC "space," enabling a highly efficient iterative process for improving MHC class II binding predictions
    corecore