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Abstract

CD4 positive T helper cells control many aspects of specific immunity. These cells are specific for peptides derived from
protein antigens and presented by molecules of the extremely polymorphic major histocompatibility complex (MHC) class II
system. The identification of peptides that bind to MHC class II molecules is therefore of pivotal importance for rational
discovery of immune epitopes. HLA-DR is a prominent example of a human MHC class II. Here, we present a method,
NetMHCIIpan, that allows for pan-specific predictions of peptide binding to any HLA-DR molecule of known sequence. The
method is derived from a large compilation of quantitative HLA-DR binding events covering 14 of the more than 500 known
HLA-DR alleles. Taking both peptide and HLA sequence information into account, the method can generalize and predict
peptide binding also for HLA-DR molecules where experimental data is absent. Validation of the method includes
identification of endogenously derived HLA class II ligands, cross-validation, leave-one-molecule-out, and binding motif
identification for hitherto uncharacterized HLA-DR molecules. The validation shows that the method can successfully predict
binding for HLA-DR molecules—even in the absence of specific data for the particular molecule in question. Moreover,
when compared to TEPITOPE, currently the only other publicly available prediction method aiming at providing broad HLA-
DR allelic coverage, NetMHCIIpan performs equivalently for alleles included in the training of TEPITOPE while outperforming
TEPITOPE on novel alleles. We propose that the method can be used to identify those hitherto uncharacterized alleles,
which should be addressed experimentally in future updates of the method to cover the polymorphism of HLA-DR most
efficiently. We thus conclude that the presented method meets the challenge of keeping up with the MHC polymorphism
discovery rate and that it can be used to sample the MHC ‘‘space,’’ enabling a highly efficient iterative process for improving
MHC class II binding predictions.
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Introduction

Major histocompatibility complex (MHC) molecules play an

essential role in the host-pathogen interactions determining the

onset and outcome of many host immune responses. While

peptides derived from foreign, intracellular proteins and presented

in complex with MHC class I molecules can trigger a response

from cytotoxic T lymphocytes (CTL), MHC class II molecules

present peptides derived from proteins taken up from the extra-

cellular environment. They stimulate cellular and humoral

immunity against pathogenic microorganisms through the actions

of helper T lymphocytes. Only a small fraction of the possible

peptides that can be generated from proteins of pathogenic

organisms actually generate an immune response. In order for a

peptide to stimulate a helper T lymphocyte response, it must bind

MHC II in the endocytic organelles [1].

MHC molecules are extremely polymorphic. The number of

identified human MHC (HLA) molecules has surpassed 1500 for

class I and many thousands for class II [2]. This high degree of

polymorphism constitutes a challenge for T cell epitope discovery,

since each of these molecules potentially has a unique binding

specificity, and hence a unique preference for which peptides to

present to the immune system. Even though many of the alleles

could be functionally very similar (i.e. have binding pockets that are

similar to other alleles) it is often very difficult a priori to identify

such similarities since subtle differences in binding pocket amino

acids can lead to dramatic changes in binding specificity [3].

During the last decades, prediction of T cell epitopes has

reached a level of accuracy which makes prediction algorithms a

natural and integral part of most major large scale rational epitope

discovery projects [4–6]. The single most selective event defining

T cell epitopes is the binding of peptide fragments to the MHC

complexes [7,8]. However, most efforts in developing accurate

prediction algorithms for MHC/peptide binding has focused on

MHC class I (for review see [9]). Here, large-scale epitope

discovery projects integrating high-throughput immunoassays [10]

with bioinformatics has achieved highly accurate prediction

algorithms covering large proportions of the human MHC class

I allelic polymorphism [3,11,12]. The situation for MHC class II is

quite different. Here, most prediction algorithms have been
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developed from small data sets covering a single or a few different

MHC molecules [13–24]. Very limited work has been done on

deriving HLA class II prediction algorithms with broad allelic

coverage. To our knowledge, only three such publicly available

method exists: Propred [25], ARB [17], and NetMHCII [26].

Propred is a publicly available version of the TEPITOPE method

[27], which is an experimentally derived virtual matrix-based

prediction method that covers 50 different HLA-DR alleles, and

relies on the approximation that the peptide binding specificity can

be determined solely from alignment of MHC pockets amino

acids. NetMHCII and ARB are weight matrix data-driven

methods derived from quantitative peptide/MHC binding data

and covers 14 HLA-DR alleles (as well as some mouse MHC class

II alleles). Most other HLA class II prediction methods have been

trained and evaluated on very limited data sets covering only a

single or a few different HLA class II alleles [13–23].

We have previously shown that a minimum number of 100–200

peptides with characterized binding affinity is needed to derive an

accurate description of the binding motif for MHC class II alleles

[26]. Characterizing the binding preference of each MHC molecule

would therefore be an immense and very costly undertaking. In a

recent paper, we have demonstrated that is a possible to derive

accurate predictions for any HLA class I A and B loci protein of

known sequence, by interpolating information from neighboring

HLA class I molecules which have been experimentally addressed

[3]. It would therefore seem natural to attempt as similar approach

to derive a pan-specific HLA class II prediction algorithm. For two

major reasons, however, the situation for HLA class II is very

different from HLA class I. Firstly, quantitative binding data is only

available for a few HLA class II alleles (only 14 HLA-DR alleles are

characterized by more than 100 quantitative binding data points,

the IEDB database November 2007, [28]). Secondly, the HLA class

II binding groove is open at both ends allowing binding of peptides

extended beyond the nonamer-binding core [29,30]. A prerequisite

for deriving a pan-specific binding prediction algorithm is therefore

a precise alignment of the peptide-binding core to the HLA binding

cleft. This alignment is essential since the algorithm underlying the

pan-specific binding predictions relies on the ability to capture

general features of the relationship between peptides and HLA

sequences and interpret these in terms of a binding affinity. Such

relationships can only by captured if the peptide is correctly aligned

relative to the residues in the HLA binding cleft. We have recently

published a method [26] for prediction of peptide-MHC class II

binding that covers the 14 HLA-DR alleles which are populated

with large amounts of quantitative peptide data in the IEDB

database. This method provides a predicted binding affinity value

for each peptide, together with an identification of the peptide-

binding core, and it is based upon these predictions, we have

developed this HLA-DR pan-specific method following the strategy

described in [3].

In this work, we demonstrate how a pan-specific HLA-DR

prediction method exploiting both peptide and primary HLA

sequence can be used to accurately predict quantitative binding

predictions for all HLA-DR molecules of known protein sequence.

In particular, the method is capable of predicting the specificity of

HLA-DR molecules with previously uncharacterized binding

specificities thus demonstrating the true pan-specific nature of

the method. The method and the benchmark data sets are

available at http://www.cbs.dtu.dk/services/NetMHCIIpan.

Results

We trained the pan-specific HLA-DR prediction method as

schematically illustrated in Figure 1. Both peptide sequences and

HLA primary sequence information were used as input to the

method. The peptide core and peptide flanking residues (PFR)

were identified using the stabilized matrix alignment method [26].

Multiple register peptides were presented to the method in terms

of the normalized measured binding affinity as illustrated in

Figure 1B. By including both the peptide and HLA primary

sequence, the pan-specific method is able to predict binding of

peptides to all HLA-DR molecules even in the absence of data

characterizing its binding specificity.

Leave-One-Out Validation
To validate the pan-specific method, we conducted a leave-one-

molecule out (LOO) experiment covering all 14 HLA-DR alleles

included in the IEDB data set. For each allele, an artificial neural

network (ANN) pan-specific predictor was trained as described in

Materials and Method using all peptide data from the IEDB data

set except the data for the HLA-DR molecule in question. Next,

peptide binding affinity values for the HLA-DR molecule in

question were obtained as the ANN prediction score for the

optimal nonamer peptide core. The experiment thus simulates

prediction of binding to hitherto un-characterized HLA-DR

molecules. The predictive performance for each HLA allele was

measured in terms of the AUC value [31] and Pearson’s

correlation [32]. Values for the Spearman’s rank correlation

[32] are given in Table S1. For each allele, we compared the LOO

performance to that of the TEPITOPE method [27] for the alleles

covered by this method, and a conventional single allele predictor

(SMM-align [26]) trained on data from the most closely related

HLA molecule as identified by similarity between the HLA

sequences (Neighbor).

The results shown in Table 1 clearly demonstrate the predictive

power of the pan-specific LOO method. The LOO approach

achieves the highest predictive performance for all 11 alleles

covered by TEPITOPE, and only for two alleles (DRB1*1302,

and DRB4*0101) is the performance of the single allele neighbor

method (SMM-align) better than that of the pan-specific LOO

method. These differences are statistically significant (p,0.001 and

p = 0.001, respectively, Binomial test).

Author Summary

CD4 positive T helper cells provide essential help for
stimulation of both cellular and humoral immune reac-
tions. T helper cells recognize peptides presented by
molecules of the major histocompatibility complex (MHC)
class II system. HLA-DR is a prominent example of a human
MHC class II locus. The HLA molecules are extremely
polymorphic, and more than 500 different HLA-DR protein
sequences are known today. Each HLA-DR molecule
potentially binds a unique set of antigenic peptides, and
experimental characterization of the binding specificity for
each molecule would be an immense and highly costly
task. Only a very limited set of MHC molecules has been
characterized experimentally. We have demonstrated
earlier that it is possible to derive accurate predictions
for MHC class I proteins by interpolating information from
neighboring molecules. It is not straightforward to take a
similar approach to derive pan-specific HLA-DR class II
predictions because the HLA class II molecules can bind
peptides of very different lengths. Here, we nonetheless
show that this is indeed possible. We develop an HLA-DR
pan-specific method that allows for prediction of binding
to any HLA-DR molecule of known sequence—even in the
absence of specific data for the particular molecule in
question.

Pan-Specific HLA-DR Binding Predictions
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The predictive performance of the pan-specific method relies on

the ability to interpolate information from ‘‘neighboring’’ alleles in

HLA specificity space and interpret this information in terms of

binding affinities. It is thus expected that the pan-specific method

should perform best in cases where closely related HLA molecules

are included in the training of the method. The data in Table 1

Figure 1. Schematic Illustration of the NetMHCIIpan Method. (A) The HLA-DR pseudo sequence is constructed from polymorphic HLA-DR
residues in potential contact with a bound peptide. (B) Position specific scoring matrix (PSSM) and peptide core alignment (shown in red) is made for
each allele using the SMM-align method [26]. N and C terminal peptide flanking regions, PFR, are identified as the up to three amino acids flanking
the peptide-binding core. (C) Suboptimal peptides are presented to the NetMHCpan method with binding values normalized to the optimal peptide
score (for the peptide shown in red) as described in Materials and Methods. (D) The NetMHCIIpan method is trained integrating data from all alleles.
Input to the artificial neural network training includes the peptide core, composition and length of the N and C terminal PFR, length of the source
peptide as well as the normalized binding affinity value (for details see Materials and Methods).
doi:10.1371/journal.pcbi.1000107.g001

Table 1. Leave-One-Molecule-Out Benchmark Results in Terms of the AUC and Pearson’s Correlation Values.

AUC Pearson Neighbor

Allele N LOO Neighbor TEPITOPE LOO Neighbor Dist Allele

DRB1*0101 5166 0.778 0.736 0.720 0.570 0.489 0.352 DRB1*0401

DRB1*0301 1020 0.746 0.679 0.664 0.449 0.337 0.277 DRB3*0101

DRB1*0401 1024 0.775 0.726 0.716 0.598 0.503 0.066 DRB1*0405

DRB1*0404 663 0.852 0.808 0.770 0.684 0.596 0.091 DRB1*0401

DRB1*0405 630 0.808 0.793 0.759 0.597 0.557 0.066 DRB1*0401

DRB1*0701 853 0.825 0.760 0.761 0.655 0.544 0.504 DRB1*0901

DRB1*0802 420 0.841 0.827 0.766 0.631 0.575 0.111 DRB1*1101

DRB1*0901 530 0.653 0.639 0.388 0.369 0.431 DRB5*0101

DRB1*1101 950 0.799 0.696 0.721 0.588 0.401 0.084 DRB1*1302

DRB1*1302 498 0.658 0.675 0.652 0.351 0.343 0.084 DRB1*1101

DRB1*1501 934 0.738 0.705 0.686 0.535 0.489 0.295 DRB1*0404

DRB3*0101 549 0.716 0.686 0.444 0.368 0.277 DRB1*0301

DRB4*0101 446 0.724 0.726 0.469 0.422 0.397 DRB1*0404

DRB5*0101 924 0.831 0.810 0.680 0.633 0.592 0.295 DRB1*1101

Ave* 14607 0.768 0.733 0.541 0.470

Ave** 0.787 0.747 0.718

The table gives the allele name, the number of peptides included in the IEDB data for each allele, the LOO, the nearest neighbor SMM-align [26] and TEPITOPE [27]
performances, the later only for subset of alleles covered by that method. In bold is highlighted the highest performance for each allele. The Ave* and Ave** rows give
the average performance over all 14 alleles, and over the 11 alleles covered by the TEPITOPE method, respectively.
doi:10.1371/journal.pcbi.1000107.t001

Pan-Specific HLA-DR Binding Predictions
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and Figure 2 illustrates that this is indeed the case. Except for the

two outliers DRB1*1302, and DRB1*0701 the plot shows the

clear relation that alleles with close nearest neighbors tend to be

predicted with a higher accuracy compared to alleles with large

distances to their nearest neighbor.

Cross-Validation
Next, the final NetMHCIIpan method was trained on the

complete datasets in a fivefold cross-validated manner abandoning

the leave-one-out approach (see Materials and Methods). We

compare the performance of the NetMHCIIpan method to that of a

conventional single allele prediction method (SMM-align) and the

TEPITOPE method in terms of both the AUC values and the

Pearson’s correlation coefficient (the latter is only included for the

NetMHCIIpan and SMM-align methods, since the TEPITOPE

method does not provide output values that are linearly related to

the peptide binding affinity). The summary of this benchmark

calculation is shown in Figure 3 (for details see Table S2).

The results show how the pan-specific method is capable of

integrating information from neighboring HLA-DR molecules,

and thus boosting the predictive performance beyond that of the

conventional single allele methods like SMM-align and TEPI-

TOPE. For all 14 alleles included in the benchmark, the pan-

specific method outperforms the two other methods (p,0.001,

Binominal test).

Validation Using a Hitherto Uncharacterized HLA-DR
Molecule

The ultimate validation of a pan-specific method for HLA-DR

peptide binding predictions would be to identify which peptides

Figure 2. Predictive Performance in Terms of the Pearson’s Correlation of the LOO Pan-Specific Method as a Function of the
Distance to Its Nearest Neighbor HLA-DR Allele. The nearest neighbor distance is estimated as described in Materials and Methods.
doi:10.1371/journal.pcbi.1000107.g002

Figure 3. Cross-Validation Benchmark Evaluation. The predictive performance of the pan-specific, SMM-align, and TEPITOPE methods
compared in terms of the Pearson’s correlation and AUC values averaged over the 11 alleles covered by the TEPITOPE method, respectively (data for
the individual alleles is given in Table S2).
doi:10.1371/journal.pcbi.1000107.g003

Pan-Specific HLA-DR Binding Predictions
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that will bind to a hitherto un-characterized HLA-DR molecule.

We therefore conducted such an experiment where a set of 256

15mer peptides were tested in an in vitro binding assay for binding

to the HLA-DRB1*0813 molecule (described in materials and

methods). Of the 20 top scoring peptides, 75% were shown to bind

with a KD values below 1000 nM, and 50% were shown to bind

stronger than 50 nM. A performance summary of this experiment

is shown in Table 2. This experiment demonstrates how the pan-

specific prediction approach can identify peptide-binding motifs

even in the absence of any data for the specific query HLA-DR

molecule.

Identifying Endogenously Presented Peptides
The NetMHCIIpan method was further validated using a large

set of data from the SYFPEITHI database [29], which were not

included in the training data of the NetMHCIIpan method. This set

consists of 584 HLA ligands restricted to 28 different HLA-DR

alleles. For every peptide, the source protein was found in the

SwissProt database [33]. If more than one source protein was

possible, the longest protein was chosen. The source protein was

split into overlapping peptide sequences of the length of the HLA

ligand. All peptides except the annotated HLA ligand were taken

as negative peptides. We are aware that this is a strong

assumption, since suboptimal peptides that could be presented

on the HLA molecule are counted as negatives. For each protein-

HLA ligand pair the predictive performance was estimated as the

AUC value. The summary of this benchmark calculation is shown

in Figure 4 (for details see Table S3).

The NetMHCIIpan and TEPITOPE methods have similar

predictive performance on the subset of 17 alleles covered by

both methods. The TEPITOPE method has the highest

performance for 10 alleles and the NetMHCIIpan the highest

performance for 7 alleles (this difference is not significant p.0.3,

Binomial test). For the 11 alleles not covered by the TEPITOPE

method, NetMHCIIpan achieves the highest performance for 9

alleles, and the TEPITOPE method the highest performance for 2

alleles. For these alleles, NetMHCIIpan thus performs significantly

better than the TEPITOPE method (p,0.01, Binominal test).

Finally, for the 14 alleles not covered by the SMM-align method,

and thus not included in the training of the pan-specific method,

NetMHCIIpan achieves a higher performance than the TEPITOPE

method. However, this difference is not significant. Also, in this

experiment the NetMHCIIpan method performs particularly poorly

compared to the TEPITOPE method on the DRB1*13 alleles.

Using a network ensemble trained by leaving out the binding data

for the DRB1*1302 allele, the average predictive performance for

the DRB1*1302 allele is improved from 0.567 to 0.747 (data not

shown). This result confirms our earlier observation that the

DRB1*1302 allelic data included in the training of the

NetMHCIIpan method forms an outlier group with unusual binding

specificity characteristics.

Identification of Peptide Binding Core
To validate the ability of the NetMHCIIpan method to correctly

identify the binding core of peptides bound to MHC class II

molecules, we compiled from the PDB database [34] a set of 15

peptides which have been crystallized in complex with an HLA-

DR allele. For these peptides, we can identify the exact peptide

binding by manual extracting which peptide residue is bound in

the P1 pocket and subsequently test if this core can be identify by

Table 2. Prospective Validation Using an Hitherto
Uncharacterized HLA Molecule.

AUC
Spearman’s rank
correlation

Pearson’s
correlation

Pan-specific 0.783 0.582 0.567

TEPITOPE 0.769 0.547

Predictive performance values for the Pan-specific and TEPITOPE [27] methods,
respectively, on a set of 256 15mer peptides. The AUC value (area under the
operator receiver curve) was calculated using an IC50 binding threshold value
of 500 nM. Note, that the Pearson’s correlation is not informative for the
TEPITOPE method since this method gives large negative (2999) scores to
disfavored amino acids on certain positions.
doi:10.1371/journal.pcbi.1000107.t002

Figure 4. Prediction of Endogenously Presented Peptides. The benchmark data set consists of 584 HLA-DR restricted ligands covering 28
HLA-DR alleles downloaded from the SYFPEITHI database as described in the text. For alleles not covered by the TEPITOPE method, the closest allele
covered by the TEPITOPE method as identified by sequence similarity between the HLA pseudo-sequences is used. TEPITOPE Alleles give the average
AUC performance over the 17 alleles covered by the TEPITOPE method, and non-TEPITOPE Alleles give the average AUC performance over the 11
alleles not covered by the TEPITOPE method (data for the individual alleles is given in Table S3).
doi:10.1371/journal.pcbi.1000107.g004

Pan-Specific HLA-DR Binding Predictions
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the prediction method. As demonstrated in Table 3, both the

TEPITOPE and NetMHCIIpan methods are capable of identifying

the binding core of the 15 peptides. TEPITOPE correctly

identifies all 15 binding cores, whereas the NetMHCIIpan misaligns

one peptide by a single amino acid residue.

HLA-DR Allelic Specificity Clustering
It has previously been shown that HLA-A and HLA-B class I

molecules can be clustered into a limited number of groups also

known as supertypes sharing common binding specificity charac-

teristics. A similar clustering of HLA-DR alleles has also been

proposed [35]. In order to validate and extend this clustering, the

NetMHCIIpan method was used to cluster HLA-DR molecules

according to predicted peptide binding specificity. Pruned HLA

distance trees were calculated as described in Materials and

Methods. Figure 5 depicts a tree including 76 representatives of

the currently known HLA-DR molecules.

The overall structure of the HLA-DR specificity tree is in

accordance with the previously proposed clustering [35] contain-

ing 12 main supertypes. It is, however, striking to observe the high

degree of serotype mixing between the different supertype clusters.

Almost all of the proposed supertypes contain HLA-DR molecules

from more than one serotype. This has earlier been observed when

defining HLA-DR specific clusters based on the TEPITOPE

binding matrices [35], but not to the degree suggested by the

analysis presented here.

Discussion

The MHC molecules are extremely polymorphic giving rise to

many different peptide-binding specificities being expressed in the

human population. More than 500 different HLA-DR molecules

and more than 2000 different HLA-DQ and HLA-DP molecules

have been described [2]. The only partially pan-specific HLA-DR

prediction algorithm publicly available is the TEPITOPE method

[27]. This method describes binding of peptides to 50 HLA-DR

molecules. However, as shown in this work, the TEPITOPE

method leaves large portions of the HLA-DR allelic polymorphism

undescribed.

In the present work, we develop a HLA-DR pan-specific method,

NetMHCIIpan, capable of providing quantitative predictions of

peptide binding to all HLA-DR molecules with known protein

sequence. The method is based on artificial neural networks and is

trained on quantitative peptide HLA-DR binding data including

the peptide-binding core, peptide flanking residues, and the HLA-

DR residues estimated to be within interaction distance of the

bound peptide. The natural strength of the method is the ability to

predict binding of peptides to any HLA-DR molecule, thus being

truly HLA-DR pan-specific. Further, since the method is artificial

neural network based, it can capture non-linear relationships

defining the binding specificity both within the peptide and between

the peptide and the HLA molecule. This is fundamentally different

from the methodology underlying the TEPITOPE method, that

relies on the approximation that peptide binding specificities can be

determined as a summation over independent HLA pockets

preferences. The method is validated in terms of prediction of

peptide binding to hitherto un-characterized HLA-DR molecules,

large-scale leave-one-out experiments, cross-validation and identi-

fication of endogenously presented peptides and experimentally

validated binding cores. In all validation experiments, the

NetMHCIIpan method was shown to perform better than or

comparable to TEPITOPE, the only other partially HLA-DR

pan-specific binding prediction method publicly available.

A powerful application of the HLA-DR pan-specific prediction

algorithm would be to search for highly promiscuous peptide

sequences that will bind to most HLA-DR alleles. Such peptides

could be of high value in the development of synthetic and

recombinant vaccines, since they would bind universally in most

humans independently of MHC class II genetic background and

thus potentially provide universal helper T cell activation. By way

of example, we applied the pan-specific method to identify

peptides, predicted to bind a set of prevalent HLA-DR alleles.

Prevalent alleles were selected as HLA-DR alleles with a maximal

Table 3. Identification of Peptide Binding Cores.

HLA-DRB PDB ID Length Peptide sequence Core TEPITOPE NetMHCIIpan

DRB1*0101 2FSE 14 AGFKGEQGPKGEPG FKGEQGPKG FKGEQGPKG FKGEQGPKG

DRB1*0101 1KLG 15 GELIGILNAAKVPAD IGILNAAKV IGILNAAKV IGILNAAKV

DRB1*0101 1SJE 16 PEVIPMFSALSEGATP VIPMFSALS VIPMFSALS VIPMFSALS

DRB1*0101 1FYT 13 PKYVKQNTLKLAT YVKQNTLKL YVKQNTLKL YVKQNTLKL

DRB1*0101 1AQD 15 VGSDWRFLRGYHQYA WRFLRGYHQ WRFLRGYHQ WRFLRGYHQ

DRB1*0101 1PYW 11 XFVKQNAAALX FVKQNAAAL FVKQNAAAL FVKQNAAAL

DRB1*0101 1T5X 15 AAYSDQATPLLLSPR YSDQATPLL YSDQATPLL YSDQATPLL

DRB1*0301 1A6A 15 PVSKMRMATPLLMQA MRMATPLLM MRMATPLLM MRMATPLLM

DRB1*0401 2SEB 12 AYMRADAAAGGA MRADAAAGG MRADAAAGG YMRADAAAG

DRB1*0401 1J8H 13 PKYVKQNTLKLAT YVKQNTLKL YVKQNTLKL YVKQNTLKL

DRB1*1501 1BX2 15 ENPVVHFFKNIVTPR VHFFKNIVT VHFFKNIVT VHFFKNIVT

DRB1*1501 1YMM 23 ENPVVHFFKNIVTPRGGSGGGGG VHFFKNIVT VHFFKNIVT VHFFKNIVT

DRB5*0101 1H15 14 GGVYHFVKKHVHES YHFVKKHVH YHFVKKHVH YHFVKKHVH

DRB5*0101 1FV1 20 NPVVHFFKNIVTPRTPPPSQ FKNIVTPRT FKNIVTPRT FKNIVTPRT

DRB5*0101 1ZGL 15 VHFFKNIVTPRTPGG FKNIVTPRT FKNIVTPRT FKNIVTPRT

The table shows HLA-DR restricted peptides compiled from the PDB database [34]. The columns in the table give the HLA-DR restriction, the PDB identifier, and peptide
length and peptide amino acid sequences, respectively. The last columns give the binding core as extracted from the protein complex crystal structure, and the core as
predicted by the TEPITOPE and NetMHCIIpan methods, respectively.
doi:10.1371/journal.pcbi.1000107.t003

Pan-Specific HLA-DR Binding Predictions

PLoS Computational Biology | www.ploscompbiol.org 6 July 2008 | Volume 4 | Issue 7 | e1000107



allelic frequency above 1% in an ethnic population as reported by

Middleton et al. [36]. In doing so, we could identify peptides

predicted to bind promiscuously to all prevalent HLA-DR

molecules. Earlier efforts have been made to identify such highly

promiscuous peptides. The PADRE sequence [37] is one of the

most prominent examples of such peptides. Using the pan-specific

method, the PADRE sequence is predicted to bind to less than

40% of the prevalent HLA-DR molecules. The analysis shown

here demonstrates that exhaustive searches for truly pan-

promiscuous HLA-DR are indeed feasible using the proposed

pan-specific method.

The pan-specific approach relies on the ability of the neural

networks to capture general features of the relationship between

peptides and HLA sequences and interpret these in terms of a

binding affinity. For this approach to provide reliable predictions,

it is essential that polymorphism of the HLA molecules described

by the pan-specific method is to some degree covered by the data

included in the training of the method. For the NetMHCIIpan

prediction method, we have included binding data covering only

14 of the more than 500 known HLA-DR molecules [2], thus very

likely leaving large regions of the HLA specificity space uncovered.

On the basis of the specificity clustering shown in Figure 5, we can

identify HLA-DR alleles with un-characterized binding specific-

ities as these alleles are found far from the alleles included in the

training of the pan-specific method. Such novel HLA-DR

molecules include the DRB1*14 molecules, i.e., DRB1*1407

(12.5%) and some of the DRB1*11, like DRB1*1103 (5%), as well

as DRB1*12 alleles like DRB1*1202 (35%) placed close to center

of the tree. The number in parenthesis after each allele is the

maximal allelic frequency in an ethnic population as reported by

Middleton et al. 2003 [36].

We have previously shown how integrative approaches

combining bioinformatics and immunoassays to identify and

experimental assay peptide with uncharacterized binding affinity

can improve the prediction accuracy of peptide/MHC class I

prediction algorithms [38]. Using the pan-specific approach to

identify HLA class II molecules with uncharacterized binding

specificities, we suggest extending this search strategy into the

dimension of MHC polymorphism. A schematic illustration of this

search strategy integrating bioinformatics and high throughput

immunoassays is shown in Figure 6.

Here, we illustrate an iterative cycle that identifies novel MHC

molecules with predicted binding specificities that are dissimilar to

the specificities included in the training of the pan-specific method.

Next, immunoassays should be developed describing the binding

specificity of these molecules by identifying peptides with un-

characterized binding affinity, and experimentally assay these

peptides. Such an approach should allow for rapid and efficient

sampling of both the MHC polymorphism and the diversity of

peptide binding.

The current version of NetMHCIIpan and the benchmark data

used in this work is available at http://www.cbs.dtu.dk/services/

Figure 5. HLA-DR Clustering from NetMHCIIpan Predictions. The figure shows the clustering for 76 representative HLA-DR alleles. The tree was
generated using the neighbor-joining algorithm from HLA distance matrices as described in the text. The circles are guides to the eye highlighting
the suggested 12 HLA-DR supertypes.
doi:10.1371/journal.pcbi.1000107.g005

Pan-Specific HLA-DR Binding Predictions

PLoS Computational Biology | www.ploscompbiol.org 7 July 2008 | Volume 4 | Issue 7 | e1000107



NetMHCIIpan. The service covers all HLA-DR alleles with

known protein sequence. The method will be updated as more

data becomes available. In the future, it is our hope to extend the

method to also cover HLA-DQ and HLA-DP molecules.

Materials and Methods

Data
Quantitative HLA-DR restricted peptide-binding data was

obtained from the IEDB database [28] and from an in-house

collection of unpublished data [Bjorn Peters, private communica-

tion]. For external evaluation of the pan-specific method, we

included a set of HLA-DR class II ligands from the SYFPEITHI

database [29]. Only ligands not included in the quantitative HLA-

DR restricted peptide binding data set were used. The

SYFPEITHI data set consists of 584 MHC ligands restricted to

28 HLA-DR alleles. The details on the data set is given is Tables

S4 and S5 (the complete data sets are available at http://www.cbs.

dtu.dk/suppl/immunology/NetMHCIIpan.php).

Method
The pan-specific HLA-DR method was constructed as de-

scribed in Figure 1. The peptide nonamer core and peptide-

flanking residues (PFR) were identified for each of the peptides in

the IEDB dataset using the SMM-align method [26]. The SMM-

align method identifies of the maximal scoring nonamer peptide

core for each peptide sequence. This approach will thus leave out

information on the suboptimal nonamer sequences that are

predicted not to bind or to bind with a weaker affinity. To

include information on the binding affinity for these suboptimal

nonamer peptides, we assign a normalized binding score, Snorm, to

suboptimal nonamer peptides given as the ratio of the SMM-align

score for the peptide to the SMM-align score of the optimal

peptide multiplied with the log-transformed experimental IC50

binding value of the peptide. That is Snorm = (S/SM)M, where S is

the SMM-align score for the (suboptimal) peptide, SM is the SMM-

align score of the optimal peptide, and M is the binding value log-

transformed as 12log50k(aff), where aff is the experimental IC50

binding value of the full-length peptide, and log50k is the logarithm

with base 50.000. In case the SMM-align method assigns the

maximal scoring nonamer peptide a log-transform binding value

of 0, the log-transformed experimental IC50 binding value is

assigned randomly to one of the suboptimal peptides and all other

nonamer peptides are given a binding value of 0. In doing this

expansion using sub-optimal nonamer peptides, the size of the

IEDB dataset was enlarged from 14,607 to more than 100,000

data points. This more than 5 fold increase of the data gave

consistent improvements to the accuracy of the prediction method

in all benchmark calculations (data not shown).

For each peptide core, the PFRs were identified as the amino

acids flanking the peptide core up to a maximum of three at either

end.

HLA Pseudo-Sequence
The HLA sequence was encoded in terms of a pseudo-sequence

consisting of amino acid residues in contact with the peptide. The

contact residues are defined as being within 4.0 Å of the peptide in

any of a representative set of HLA class II structures. Only

residues polymorphic in any known HLA-DR, DQ and DP

protein sequence were included giving rise to a pseudo-sequence

consisting of 21 amino acid residues. The HLA class II pseudo-

sequence is described in detail in Table S6.

Neural Network Training
Artificial neural networks (ANN) were trained to quantitatively

predict peptide-HLA binding as described in Nielsen et al. [3].

The input sequences were presented to the neural network in three

distinct manners: (a) conventional sparse encoding (i.e., encoded

by 19 zeros and a one), (b) Blosum encoding, where each amino

acid was encoded by the BLOSUM50 matrix score vector [39],

and (c) a mixture of the two, where the peptide was sparse encoded

and the HLA pseudo sequence was Blosum encoded. PFRs were

calculated as the average BLOSUM62 score over a maximum

length of three amino acids [26]. The PFR length was encoded as

LPFR/3, 12LPFR/3, where LPFR is the length of the PFR (between

0 and 3), and the peptide length was encode as LPEP, 12LPEP,

where LPEP = 1/(1+exp((L215)/2)) and L is the peptide length. For

each data point, the input to the neural network thus consists of

the peptide sequence (9620 = 180 inputs), the PFRs (2620 = 40

inputs), the HLA pseudo sequence (21620 = 420 inputs), the

peptide length (2 inputs), and the length of the C and N terminal

PFR’s (262 = 4 inputs) resulting in a total of 646 input values.

To estimate the predictive performance of the method, the

leave-one-out (LOO) experiment was conducted as described by

Nielsen et al. [3]. For each HLA-DR molecule, a neural network

ensemble was trained using all available data, excluding all data

specific for the HLA-DR allele in question. Network architectures

with hidden neurons of 22, 44, 56, and 66 were used. The network

training was performed in a fivefold cross-validated manner using

the three encoding schemes described above resulting in an

ensemble of 60 neural networks (3 encoding schemes, 4

architectures, and 5 folds). The predicted affinity for a peptide

was then determined as prediction value for the maximal scoring

nonamer peptide core (including PFRs), where each nonamer

peptide core is scored as the average of the 60 predictions in the

neural network ensemble.

For the final NetMHCIIpan method, a conventional five-fold

cross-validated training was performed. The pool of unique

peptides was randomly split into five groups with all HLA binding

data for a given peptide placed in the same group (in this way, no

peptide can belong to more than one group).

Nearest Neighbor Distance
The nearest neighbor distance between two HLA alleles is

estimated from the alignment score of the HLA pseudo sequences

Figure 6. Strategy for Effective and Rational Coverage of the
MHC Polymorphism and Specificity. (A) The pan-specific MHC class
II prediction method is used to identify MHC alleles with novel binding
specificities. These alleles have a predicted binding motif that is distant
to all MHC class II molecules previously described. Subsequently,
immunoassays are developed describing their binding specificity and
data is fed back into a retraining of the pan-specific method. (B) Next,
peptides with un-characterized binding affinity (high information
peptides) are identifies, experimentally assayed and fed back into the
retraining.
doi:10.1371/journal.pcbi.1000107.g006
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using the relation d = 12s(A,B)/(s(A,A)s(B,B))1/2, where s(A,B) is the

BLOSUM50 alignment score [39] between the pseudo sequences

A and B, respectively.

HLA Distance Trees
HLA distance trees were derived from correlations between

predicted binding affinities as described by Nielsen et al. [3]. In

order to visualize the HLA distance tree, only a subset of the leaves

in the tree was displayed. The subset was selected in a Hobohm 1-

like manner, where the alleles were clustered at a 0.95 distance

level and only a single allele from each cluster selected for display

[40].

In Vitro Binding Assay
The extracellular parts of HLA DRA1*0101 and HLA

DRB1*0813 were fused to the Fos Jun leucine zipper dimerization

motifs as previously described [41]. Both chains were separately

expressed as inclusion bodies in E. coli (BL21) using standard IPTG

induction. The two chains were extracted from inclusion bodies

and purified by anion exchange and gel filtration chromatography

under denaturing conditions. Equimolar concentrations of alpha

and beta chain were diluted into a refolding buffer containing a

titration of peptide (0–15 mM). After 48 h of incubation at 18uC
the concentration of formed complex was determined by a

quantitative ELISA using the HLA-DR specific monoclonal

antibody L243. The data was fitted to a saturation curve using

non-linear regression and the Kd value determined.

Supporting Information

Table S1. Leave-One-Molecule Out (LOO) Benchmark Results

in Terms of the Spearman’s Rank Correlation. The table gives the

allele name, the number of peptide included in the IEDB data for

each allele, the LOO performance, the nearest neighbor SMM-

align [26] performance together with the distance to that neighbor

and the neighbor allele name and the performance of the

TEPITOPE method [25,27] for the subset of alleles covered by

that method. The Ave* row give the average performance over all

14 alleles, and the Ave** row gives the average performance over

the 11 alleles covered by the TEPITOPE method.

Found at: doi:10.1371/journal.pcbi.1000107.s001 (0.08 MB

DOC)

Table S2. Cross-Validated Benchmark Calculation. The pre-

dictive performance between the pan-specific, SMM-align, and

TEPITOPE methods compared in terms of the AUC value and

Pearson’s correlation. The first column gives the allele name, the

second column gives the number of data included for each allele,

the third and fourth columns give the predictive performance for

the pan-specific method, the sixth and seventh columns the

predictive performance for the SMM-align method, and the last

column the predictive performance for the TEPITOPE method.

The Ave* row give the average performance over all 14 alleles,

and the Ave** row gives the average performance over the 11

alleles covered by the TEPITOPE method.

Found at: doi:10.1371/journal.pcbi.1000107.s002 (0.08 MB

DOC)

Table S3. Prediction of Endogenously Presented Peptides. The

benchmark data set consists of 584 HLA-DR restricted ligands

covering 28 HLA-DR alleles downloaded from the SYFPEITHI

database as described in the text. The table gives the allele name,

the number of HLA ligands restricted to each allele, and the

average AUC values for the ligands restricted to each allele for the

NetMHCIIpan (PAN), and TEPITOPE methods, respectively.

The last two columns indicate if the allele is covered (v) by the

SMM-align (in PAN) and TEPITOPE (in TEPITOPE) methods,

respectively, or not. If the allele is not covered by the TEPITOPE

method, the closest allele covered by the TEPITOPE method as

identified by sequence similarity between the HLA pseudo-

sequences is used. Ave* and Ave** give the average performance

over all 28 alleles and the 17 alleles covered by the TEPITOPE

method, respectively. Ave*** gives the average performance over

the 11 alleles not covered by the TEPITOPE method, and

Ave**** gives the average performance for the 14 alleles not

covered by the SMM-align method.

Found at: doi:10.1371/journal.pcbi.1000107.s003 (0.08 MB

DOC)

Table S4. IEDB Quantitative HLA-DR Restricted Peptide

Binding Data. 14 HLA-DR alleles are covered by the data set.

The first column gives the HLA-DR allele, the second column the

number of peptide data for each allele, and the third and fourth

columns give the number of peptide binders/non-binders,

respectively. Peptide binders are classified using an IC50 threshold

value of 500 nM.

Found at: doi:10.1371/journal.pcbi.1000107.s004 (0.05 MB

DOC)

Table S5. The SYFPEITHI Data Set. HLA-DR ligands

downloaded from the SYFPEITHI database [29]. The first and

third columns give the allele names, and the second and fourth

column give the number of HLA-DR ligands for each allele.

Found at: doi:10.1371/journal.pcbi.1000107.s005 (0.05 MB

DOC)

Table S6. The HLA Class II Pseudo-Sequence. The table shows

the HLA class II pseudo-sequence. The columns gives the pseudo

sequence position, the HLA residue numbering according to the

IMGT nomenclature [2], and the amino acid polymorphism at

each position in the pseudo sequence for known HLA-DR, DP

and DQ loci protein sequences (as of November 2007). Note, that

the DPB protein sequence has a deletion of two amino acids at

position 24–25 compared to DRB. The DQB sequence numbering

for DPB after position 25 is off by two. For DPB position 26 thus

corresponds to position 24 in the DPB protein sequence.

Found at: doi:10.1371/journal.pcbi.1000107.s006 (0.09 MB

DOC)
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