97 research outputs found

    DNA Damage Response Protein CHK2 Regulates Metabolism in Liver Cancer

    Get PDF
    Defective mitosis with chromosome missegregation can have a dramatic effect on genome integrity by causing DNA damage, activation of the DNA damage response (DDR), and chromosomal instability. Although this is an energy-dependent process, mechanisms linking DDR to cellular metabolism are unknown. Here we show that checkpoint kinase 2 (CHK2), a central effector of DDR, regulates cellular energy production by affecting glycolysis and mitochondrial functions. Patients with hepatocellular carcinoma (HCC) had increased CHK2 mRNA in blood, which was associated with elevated tricarboxylic acid cycle (TCA) metabolites. CHK2 controlled expression of succinate dehydrogenase (SDH) and intervened with mitochondrial functions. DNA damage and CHK2 promoted SDH activity marked by increased succinate oxidation through the TCA cycle; this was confirmed in a transgenic model of HCC with elevated DNA damage. Mitochondrial analysis identified CHK2-controlled expression of SDH as key in sustaining reactive oxygen species production. Cells with DNA damage and elevated CHK2 relied significantly on glycolysis for ATP production due to dysfunctional mitochondria, which was abolished by CHK2 knockdown. This represents a vulnerability created by the DNA damage response that could be exploited for development of new therapies

    CHK2 overexpression and mislocalisation within mitotic structures enhances chromosomal instability and hepatocellular carcinoma progression

    Get PDF
    OBJECTIVE: Chromosomal instability (CIN) is the most common form of genomic instability, which promotes hepatocellular carcinoma (HCC) progression by enhancing tumour heterogeneity, drug resistance and immunity escape. CIN per se is an important factor of DNA damage, sustaining structural chromosome abnormalities but the underlying mechanisms are unknown. DESIGN: DNA damage response protein checkpoint kinase 2 (Chk2) expression was evaluated in an animal model of diethylnitrosamine-induced HCC characterised by DNA damage and elevated mitotic errors. Chk2 was also determined in two discrete cohorts of human HCC specimens. To assess the functional role of Chk2, gain on and loss-of-function, mutagenesis, karyotyping and immunofluorescence/live imaging were performed by using HCT116, Huh7 and human hepatocytes immortalised with hTERT gene (HuS). RESULTS: We demonstrate that mitotic errors during HCC tumorigenesis cause lagging chromosomes/DNA damage and activation of Chk2. Overexpression/phosphorylation and mislocalisation within the mitotic spindle of Chk2 contributes to induce lagging chromosomes. Lagging chromosomes and mitotic activity are reversed by knockdown of Chk2. Furthermore, upregulated Chk2 maintains mitotic activity interacting with Aurora B kinase for chromosome condensation and cytokinesis. The forkhead-associated domain of Chk2 is required for Chk2 mislocalisation to mitotic structures. In addition, retinoblastoma protein phosphorylation contributes to defective mitoses. A cohort and independent validation cohort show a strong cytoplasm to nuclear Chk2 translocation in a subset of patients with HCC. CONCLUSIONS: The study reveals a new mechanistic insight in the coinvolvement of Chk2 in HCC progression. These findings propose Chk2 as a putative biomarker to detect CIN in HCC providing a valuable support for clinical/therapeutical management of patients

    Deregulated expression of the imprinted DLK1-DIO3 region in glioblastoma stemlike cells: Tumor suppressor role of lncRNA MEG3

    Get PDF
    Background: Glioblastoma (GBM) stemlike cells (GSCs) are thought to be responsible for the maintenance and aggressiveness of GBM, the most common primary brain tumor in adults. This study aims at elucidating the involvement of deregulations within the imprinted delta-like homolog 1 gene type III iodothyronine deiodinase gene (DLK-DIO3) region on chromosome 14q32 in GBM pathogenesis. Methods: Real-time PCR analyses were performed on GSCs and GBM tissues. Methylation analyses, gene expression, and reverse-phase protein array profiles were used to investigate the tumor suppressor function of the maternally expressed 3 gene (MEG3). Results: Loss of expression of genes and noncoding RNAs within the DLK1-DIO3 region was observed in GSCs and GBM tissues compared with normal brain. This downregulation is mainly mediated by epigenetic silencing. Kaplan-Meier analysis indicated that low expression of MEG3 and MEG8 long noncoding (lnc)RNAs significantly correlated with short survival in GBM patients. MEG3 restoration impairs tumorigenic abilities of GSCs in vitro by inhibiting cell growth, migration, and colony formation and decreases in vivo tumor growth, reducing infiltrative growth. These effects were associated with modulation of genes involved in cell adhesion and epithelial-to-mesenchymal transition (EMT). Conclusion: In GBM, MEG3 acts as a tumor suppressor mainly regulating cell adhesion, EMT, and cell proliferation, thus providing a potential candidate for novel GBM therapies

    The Northern Cross Fast Radio Burst project - II. Monitoring of repeating FRB 20180916B, 20181030A, 20200120E and 20201124A

    Get PDF
    In this work we report the results of a nineteen-month Fast Radio Burst observational campaign carried out with the North-South arm of the Medicina Northern Cross radio telescope at 408~MHz in which we monitored four repeating sources: FRB20180916B, FRB20181030A, FRB20200120E and FRB20201124A. We present the current state of the instrument and the detection and characterisation of three bursts from FRB20180916B. Given our observing time, our detections are consistent with the event number we expect from the known burst rate (2.7±1.92.7 \pm 1.9 above our 10σ\sigma, 38~Jy~ms detection threshold) in the 5.2 day active window of the source, further confirming the source periodicity. We detect no bursts from the other sources. We turn this result into a 95\% confidence level lower limit on the slope of the differential fluence distribution α\alpha to be α>2.1\alpha > 2.1 and α>2.2\alpha > 2.2 for FRB20181030A and FRB20200120E respectively. Given the known rate for FRB20201124A, we expect 1.0±1.11.0 \pm 1.1 bursts from our campaign, consistent with our non-detection.Comment: MNRAS Accepted, 10 pages, 6 figure

    Exact results on decoherence and entanglement in a system of N driven atoms and a dissipative cavity mode

    Get PDF
    We solve the dynamics of an open quantum system where N strongly driven two-level atoms are equally coupled on resonance to a dissipative cavity mode. Analytical results are derived on decoherence, entanglement, purity, atomic correlations and cavity field mean photon number. We predict decoherence-free subspaces for the whole system and the N-qubit subsystem, the monitoring of quantum coherence and purity decay by atomic populations measurements, the conditional generation of atomic multi-partite entangled states and of cavity cat-like states. We show that the dynamics of atoms prepared in states invariant under permutation of any two components remains restricted within the subspace spanned by the completely symmetric Dicke states. We discuss examples and applications in the cases N=3,4.Comment: 7 pages, 4 figures, accepted in EPJ

    Immunogenicity of viral vaccines in the italian military

    Get PDF
    Military personnel of all armed forces receive multiple vaccinations and have been doing so since long ago, but relatively few studies have investigated the possible negative or positive interference of simultaneous vaccinations. As a contribution to fill this gap, we analyzed the response to the live trivalent measles/mumps/rubella (MMR), the inactivated hepatitis A virus (HAV), the inactivated trivalent polio, and the trivalent subunits influenza vaccines in two cohorts of Italian military personnel. The first cohort was represented by 108 students from military schools and the second by 72 soldiers engaged in a nine-month mission abroad. MMR and HAV vaccines had never been administered before, whereas inactivated polio was administered to adults primed at infancy with a live trivalent oral polio vaccine. Accordingly, nearly all subjects had baseline antibodies to polio types 1 and 3, but unexpectedly, anti-measles/-mumps/-rubella antibodies were present in 82%, 82%, and 73.5% of subjects, respectively (43% for all of the antigens). Finally, anti-HAV antibodies were detectable in 14% and anti-influenza (H1/H3/B) in 18% of the study population. At mine months post-vaccination, 92% of subjects had protective antibody levels for all MMR antigens, 96% for HAV, 69% for the three influenza antigens, and 100% for polio types 1 and 3. An inverse relationship between baseline and post-vaccination antibody levels was noticed with all the vaccines. An excellent vaccine immunogenicity, a calculated long antibody persistence, and apparent lack of vaccine interference were observed

    Downregulation of ETS Rescues Diabetes-Induced Reduction of Endothelial Progenitor Cells

    Get PDF
    Transplantation of vasculogenic progenitor cells (VPC) improves neovascularization after ischemia. However, patients with type 2 diabetes mellitus show a reduced VPC number and impaired functional activity. Previously, we demonstrated that p38 kinase inhibition prevents the negative effects of glucose on VPC number by increasing proliferation and differentiation towards the endothelial lineage in vitro. Moreover, the functional capacity of progenitor cells is reduced in a mouse model of metabolic syndrome including type 2 diabetes (Lepr(db)) in vivo.The aim of this study was to elucidate the underlying signalling mechanisms in vitro and in vivo. Therefore, we performed DNA-protein binding arrays in the bone marrow of mice with metabolic syndrome, in blood-derived progenitor cells of diabetic patients as well as in VPC ex vivo treated with high levels of glucose. The transcriptional activation of ETS transcription factors was increased in all samples analyzed. Downregulation of ETS1 expression by siRNA abrogated the reduction of VPC number induced by high-glucose treatment. In addition, we observed a concomitant suppression of the non-endothelial ETS-target genes matrix metalloproteinase 9 (MMP9) and CD115 upon short term lentiviral delivery of ETS-specific shRNAs. Long term inhibition of ETS expression by lentiviral infection increased the number of cells with the endothelial markers CD144 and CD105.These data demonstrate that diabetes leads to dysregulated activation of ETS, which blocks the functional activity of progenitor cells and their commitment towards the endothelial cell lineage

    Ancestry reported by white adults with cutaneous melanoma and control subjects in central Alabama

    Get PDF
    BACKGROUND: We sought to evaluate the hypothesis that the high incidence of cutaneous melanoma in white persons in central Alabama is associated with a predominance of Irish and Scots descent. METHODS: Frequencies of country of ancestry reports were tabulated. The reports were also converted to scores that reflect proportional countries of ancestry in individuals. Using the scores, we computed aggregate country of ancestry indices as estimates of group ancestry composition. HLA-DRB1*04 allele frequencies and relationships to countries of ancestry were compared in probands and controls. Results were compared to those of European populations with HLA-DRB1*04 frequencies. RESULTS: Ninety evaluable adult white cutaneous melanoma probands and 324 adult white controls reported countries of ancestry of their grandparents. The respective frequencies of Ireland, and Scotland and "British Isles" reported countries of ancestry were significantly greater in probands than in controls. The respective frequencies of Wales, France, Italy and Poland were significantly greater in controls. 16.7% of melanoma probands and 23.8% of controls reported "Native American" ancestry; the corresponding "Native American" country of ancestry index was not significantly different in probands and controls. The frequency of HLA-DRB1*04 was significantly greater in probands, but was not significantly associated with individual or aggregate countries of ancestry. The frequency of DRB1*04 observed in Alabama was compared to DRB1*04 frequencies reported from England, Wales, Ireland, Orkney Island, France, Germany, and Australia. CONCLUSION: White adults with cutaneous melanoma in central Alabama have a predominance of Irish, Scots, and "British Isles" ancestry and HLA-DRB1*04 that likely contributes to their high incidence of cutaneous melanoma

    An improved microRNA annotation of the canine genome

    Get PDF
    The domestic dog, Canis familiaris, is a valuable model for studying human diseases. The publication of the latest Canine genome build and annotation, CanFam3.1 provides an opportunity to enhance our understanding of gene regulation across tissues in the dog model system. In this study, we used the latest dog genome assembly and small RNA sequencing data from 9 different dog tissues to predict novel miRNAs in the dog genome, as well as to annotate conserved miRNAs from the miRBase database that were missing from the current dog annotation. We used both miRCat and miRDeep2 algorithms to computationally predict miRNA loci. The resulting, putative hairpin sequences were analysed in order to discard false positives, based on predicted secondary structures and patterns of small RNA read alignments. Results were further divided into high and low confidence miRNAs, using the same criteria. We generated tissue specific expression profiles for the resulting set of 811 loci: 720 conserved miRNAs, (207 of which had not been previously annotated in the dog genome) and 91 novel miRNA loci. Comparative analyses revealed 8 putative homologues of some novel miRNA in ferret, and one in microbat. All miRNAs were also classified into the genic and intergenic categories, based on the Ensembl RefSeq gene annotation for CanFam3.1. This additionally allowed us to identify four previously undescribed MiRtrons among our total set of miRNAs. We additionally annotated piRNAs, using proTRAC on the same input data. We thus identified 263 putative clusters, most of which (211 clusters) were found to be expressed in testis. Our results represent an important improvement of the dog genome annotation, paving the way to further research on the evolution of gene regulation, as well as on the contribution of post-transcriptional regulation to pathological conditions
    • …
    corecore