167 research outputs found

    Automated Generation of Digital Models for Production Lines through State Reconstruction

    Get PDF
    Thanks to the rapid advances in information technologies, digital twins have been widely adopted in the manufacturing industry to support production planning and control. At the core of a digital twin is a digital model that mirrors the physical system in a virtual space. It is inefficient to develop digital twins by modeling the considered systems manually. Although significant research effort has been made to automate the generation of digital models, most approaches so far impose strong assumptions on the available data or cannot precisely capture the behavior of the physical system. Noticing the current gap, we propose in this paper a novel approach for automatically generating a graph representation of a production line from an event log through state reconstruction. The feasibility of the proposed approach has been demonstrated on three simulated instances

    Modulatory role of nitric oxide in wound healing of potato tubers

    Get PDF
    IntroductionWounding of potato (Solanum tuberosum L.) tubers affects the postharvest storage qualities and marketability. To mitigate wound-related losses, it is necessary to accelerate wound healing (WH) responses of potato tubers. While role of nitric oxide (NO) in healing of wounded biological tissues is well known, its impact on WH responses of potato tubers has not been examined thoroughly. The aim of this study was to elucidate the potential modulatory role of NO in WH response of potato tubers by determining the activity of key enzymes associated with NO biosynthesis.MethodsUsing a model wounding system, tuber tissue discs were extracted from mini tubers of cv. Russet Burbank to examine their WH responses. Tuber discs were treated with NO related chemicals, such as NO scavenger, nitric oxide synthase (NOS) inhibitor, and NO donors. The effect of these treatments on in vitro production of NO, activity of nitrate reductase, NOS, and phenylalanine ammonia-lyase were determined. The accumulation of suberin polyphenolics (SPP) in wounded parenchyma cells, an indicator of early suberization process, was analyzed histologically.ResultsTreatment of tuber tissues with the higher dose of an NO scavenger (2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) at the time of wounding completely ceased SPP accumulation between 0 h to 3 d after wounding. Increased production of NO and enhanced activity of NOS were also observed immediately after wounding of the tuber tissues. The results suggest that NO is a key biological modulator in WH responses of potato tubers and could be optimized as a potential exogenous treatment to counter wound-related losses

    Combined effect of water loss and wounding stress on gene activation of metabolic pathways associated with phenolic biosynthesis in carrot

    Get PDF
    Abstract: The application of postharvest abiotic stresses is an effective strategy to activate the primary and secondary metabolism of plants inducing the accumulation of antioxidant phenolic compounds. In the present study, the effect of water stress applied alone and in combination with wounding stress on the activation of primary (shikimic acid) and secondary (phenylpropanoid) metabolic pathways related with the accumulation of phenolic compound in plants was evaluated. Carrot (Daucus carota) was used as model system for this study, and the effect of abiotic stresses was evaluated at the gene expression level and on the accumulation of metabolites. As control of the study, whole carrots were stored under the same conditions. Results demonstrated that water stress activated the primary and secondary metabolism of carrots, favoring the lignification process. Likewise, wounding stress induced higher activation of the primary and secondary metabolism of carrots as compared to water stress alone, leading to higher accumulation of shikimic acid, phenolic compounds and lignin. Additional water stress applied on wounded carrots exerted a synergistic effect on the wound-response at the gene expression level. For instance, when wounded carrots were treated with water stress, the tissue showed 20- and 14-fold increases in the relative expression of 3-deoxy-D-arabino-heptulosanate synthase and phenylalanine ammonia-lyase genes, respectively. However, since lignification was increased, lower accumulation of phenolic compounds was detected. Indicatively, at 48 h of storage, wounded carrots treated with water stress showed ~31% lower levels of phenolic compounds and ~23% higher lignin content as compared with wounded controls. In the present study, it was demonstrated that water stress is one of the pivotal mechanism of the wound-response in carrot. Results allowed the elucidation of strategies to induce the accumulation of specific primary or secondary metabolites when plants are treated with water stress alone or when additional water stress is applied on wounded tissue. If the accumulation of a specific primary or secondary metabolite were desirable, it would be recommended to apply both stresses to accelerate their biosynthesis. However, strategies such as the use of enzymatic inhibitors to block the carbon flux and enhance the accumulation of specific compounds should be designed

    Potato skin proteome is enriched with plant defence components

    Get PDF
    Periderm is a tissue of secondary origin that replaces damaged epidermis. It can be found in underground plant organs, as an above-ground tissue of woody species (cork), and as a wound-healing tissue. Its outer layers are composed of phellem cells with suberized walls that constitute a protective barrier, preventing pathogen invasion and fluid loss. In potato, a model for periderm studies, periderm tissue replaces the epidermis early in tuber development and the suberized phellems constitute the tuber's skin. To identify factors involved in phellem/skin development and that play a role in its defensive characteristics, two-dimensional gel electrophoresis was used to compare the skin and parenchymatic flesh proteomes of young developing tubers. Proteins exhibiting differentially high signal intensity in the skin were sorted by functional categories. As expected, the differential skin proteome was enriched in proteins whose activity is characteristic of actively dividing tissues such as cell proliferation, C1 metabolism, and the oxidative respiratory chain. Interestingly, the major functional category consisted of proteins (63%) involved in plant defence responses to biotic and abiotic stresses. This group included three isozymes of caffeoyl-CoA O-methyltransferase and five isozymes of peroxidase that may play a role in suberization processes. The differential expression of these proteins in the skin was further verified by RT-PCR of their corresponding transcripts in skin and tuber flesh samples. The results presented here shed light on the early events in skin development and further expand the concept of the periderm as a protective tissue containing an array of plant defence components

    Silencing of StKCS6 in potato periderm leads to reduced chain lengths of suberin and wax compounds and increased peridermal transpiration

    Get PDF
    Very long chain aliphatic compounds occur in the suberin polymer and associated wax. Up to now only few genes involved in suberin biosynthesis have been identified. This is a report on the isolation of a potato (Solanum tuberosum) 3-ketoacyl-CoA synthase (KCS) gene and the study of its molecular and physiological relevance by means of a reverse genetic approach. This gene, called StKCS6, was stably silenced by RNA interference (RNAi) in potato. Analysis of the chemical composition of silenced potato tuber periderms indicated that StKCS6 down-regulation has a significant and fairly specific effect on the chain length distribution of very long-chain fatty acids (VLCFAs) and derivatives, occurring in the suberin polymer and peridermal wax. All compounds with chain lengths of C28 and higher were significantly reduced in silenced periderms, whereas compounds with chain lengths of C26 and lower accumulated. Thus, StKCS6 is preferentially involved in the formation of suberin and wax lipidic monomers with chain lengths of C28 and higher. As a result, peridermal transpiration of the silenced lines was about 1.5-times higher than that of the wild type. Our results convincingly show that StKCS6 is involved in both suberin and wax biosynthesis and that a reduction of the monomeric carbon chain lengths leads to increased rates of peridermal transpiration

    The Arabidopsis cytochrome P450 CYP86A1 encodes a fatty acid ω-hydroxylase involved in suberin monomer biosynthesis

    Get PDF
    The lipophilic biopolyester suberin forms important boundaries to protect the plant from its surrounding environment or to separate different tissues within the plant. In roots, suberin can be found in the cell walls of the endodermis and the hypodermis or periderm. Apoplastic barriers composed of suberin accomplish the challenge to restrict water and nutrient loss and prevent the invasion of pathogens. Despite the physiological importance of suberin and the knowledge of the suberin composition of many plants, very little is known about its biosynthesis and the genes involved. Here, a detailed analysis of the Arabidopsis aliphatic suberin in roots at different developmental stages is presented. This study demonstrates some variability in suberin amount and composition along the root axis and indicates the importance of ω-hydroxylation for suberin biosynthesis. Using reverse genetics, the cytochrome P450 fatty acid ω-hydroxylase CYP86A1 (At5g58860) has been identified as a key enzyme for aliphatic root suberin biosynthesis in Arabidopsis. The corresponding horst mutants show a substantial reduction in ω-hydroxyacids with a chain length <C20, demonstrating that CYP86A1 functions as a hydroxylase of root suberized tissue. Detailed expression studies revealed a strong root specificity and a localized expression in the root endodermis. Transgenic expression of CYP86A1 fused to GFP distributed CYP86A1 to the endoplasmic reticulum, indicating that suberin monomer biosynthesis takes place in this sub-cellular compartment before intermediates are exported in the apoplast

    Using physics education research to improve the level of effectiveness of non-lab time in the AP physics B classroom

    No full text
    This document addresses method to improve instruction for non-lab time in an Advanced Placement Physics B course. Methods focus on research that were proven through the use of quantitative data. There are three regions of instruction that this document addresses. First, this document addresses ways to improve student engagement through the use of Physics Education Research proven interactive engagement methods such as peer instruction, and Interactive Lecture Demonstrations. Second, this document addresses Overview Case-Study Physics approach. The OCS method emphasizes strong conceptual understanding before the mathematical approach. Third, this document addresses Cooperative Group Problem Solving techniques to improve the student\u27s problem solving methods. The document uses a guide produced in chapter three to create a sample curriculum unit in chapter four
    corecore