39 research outputs found

    SINUSITE ODONTOGÊNICA: REVISÃO DA LITERATURA.

    Get PDF
    Sinusitis is an inflammation of the paranasal sinuses resulting from infections, with inflammation of the maxillary sinus being the most common. Involvement of the maxillary sinus with odontogenic origins accounts for approximately 10 to 12% of sinusitis cases, potentially caused by endodontic infections, implants, and exodontias that breached the bony sinus wall. Diagnosis of sinusitis involves a comprehensive clinical examination, physical assessment, and supplementary tests, such as Cone Beam Computed Tomography (CBCT), which offers advantages such as lower radiation dose, shorter scanning time, and improved visualization of the maxillary sinus region. Identifying the origin and cause facilitates appropriate treatment, preventing recurrences and complications. Treatment entails addressing the causal factor, necessitating intervention for both the dental cause and the sinusitis itself. The present study aims to explore scientific literature for articles detailing maxillary sinus involvement due to dental causes.A sinusite é uma inflamação dos seios paranasais decorrentes de infecções, sendo que a inflamação do seio maxilar é a mais comum. O envolvimento do seio maxilar com patologias de origem odontogênica apresenta cerca de 10 a 12 % dos casos de sinusite, podendo ser causado por: infecção endodôntica, implantes e exodontias que romperam a cortical óssea do seio. O diagnóstico da sinusite envolve um exame clinico bem detalhado, exame físico e exames complementares, como o uso de Tomografia Computadorizada de Feixe Cônico, pois apresenta como vantagem menores doses de radiação, menor tempo de scanning e uma melhor visualização da região do seio maxilar. Identificar a origem e a causa, favorece um tratamento adequado, evitando recidivas e complicações. O tratamento consiste na eliminação do fator causal, já que é necessário atuar sobre a causa dentária e a sinusite. O presente trabalho tem como objetivo, pesquisar na literatura científica, artigos que relatam o comprometimento do seio maxilar, por causas odontológicas

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.Publisher PDFPeer reviewe

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Strenuous Acute Exercise Induces Slow and Fast Twitch-Dependent NADPH Oxidase Expression in Rat Skeletal Muscle

    No full text
    The enzymatic complex Nicotinamide Adenine Dinucleotide Phosphate (NADPH) oxidase (NOx) may be the principal source of reactive oxygen species (ROS). The NOX2 and NOX4 isoforms are tissue-dependent and are differentially expressed in slow-twitch fibers (type I fibers) and fast-twitch fibers (type II fibers) of skeletal muscle, making them different markers of ROS metabolism induced by physical exercise. The aim of this study was to investigate NOx signaling, as a non-adaptive and non-cumulative response, in the predominant fiber types of rat skeletal muscles 24 h after one strenuous treadmill exercise session. The levels of mRNA, reduced glycogen, thiol content, NOx, superoxide dismutase, catalase, glutathione peroxidase activity, and PPARGC1α and SLC2A4 gene expression were measured in the white gastrocnemius (WG) portion, the red gastrocnemius (RG) portion, and the soleus muscle (SOL). NOx activity showed higher values in the SOL muscle compared to the RG and WG portions. The same was true of the NOX2 and NOX4 mRNA levels, antioxidant enzymatic activities, glycogen content. Twenty-four hours after the strenuous exercise session, NOx expression increased in slow-twitch oxidative fibers. The acute strenuous exercise condition showed an attenuation of oxidative stress and an upregulation of antioxidant activity through PPARGC1α gene activity, antioxidant defense adaptations, and differential gene expression according to the predominant fiber type. The most prominent location of detoxification (indicated by NOX4 activation) in the slow-twitch oxidative SOL muscle was the mitochondria, while the fast-twitch oxidative RG portion showed a more cytosolic location. Glycolytic metabolism in the WG portion suggested possible NOX2/NOX4 non-regulation, indicating other possible ROS regulation pathways

    Effects of Iron Limitation on Adherence and Cell Surface Carbohydrates of Corynebacterium diphtheriae Strains

    No full text
    Iron limitation may cause bacterial pathogens to grow more slowly; however, it may also stimulate these microorganisms to produce greater tissue damage, given that many virulence factors are controlled by the iron supply in the environment. The present study investigated the influence of low iron availability on the expression of proteins and surface sugar residues of two toxigenic strains of Corynebacterium diphtheriae subsp. mitis and evaluated their adherence to human group B erythrocytes and HEp-2 cells. A comparison was made between bacteria grown in (i) Trypticase soy broth (TSB), (ii) TSB treated with dipyridyl to deplete free iron, and (iii) TSB enriched with FeCl(3). The effects of iron concentration on adhesive properties were different for strains 241 and CDC-E8392, of the sucrose-fermenting and non-sucrose-fermenting biotypes, respectively. Iron-limited conditions enhanced interaction of strain 241 with erythrocytes and HEp-2 cells. Inhibition assays suggested the involvement of nonfimbrial protein combination 67-72p on hemagglutination of diphtheria bacilli grown under iron-limited conditions. Conversely, iron limitation inhibited adherence to glass and expression of electron-dense material on the bacterial surface. Lectin binding assays demonstrated a reduction in the number of sialic acid residues and an increase in d-mannose and d-galactose residues on the surfaces of both strains. Thus, iron exerts a regulatory role on adhesive properties of diphtheria bacilli, and low iron availability modulates the expression of C. diphtheriae surface carbohydrate moieties. The significant changes in the degree of lectin binding specific for d-mannose, d-galactose and sialic acid residues may have an effect on binding of host cells. The expression of dissimilar microbial virulence determinants may be coordinately controlled by common regulatory systems. For C. diphtheriae, the present results imply regulation of adherence and slime production as part of a global response to iron-limited environmental conditions that includes derepression of genes for the synthesis of cytotoxin and siderophores and for transport of the Fe(III)-siderophore complexes
    corecore