494 research outputs found

    The large-scale disk fraction of brown dwarfs in the Taurus cloud as measured with Spitzer

    Get PDF
    Aims. The brown dwarf (BD) formation process has not yet been completely understood. To shed more light on the differences and similarities between star and BD formation processes, we study and compare the disk fraction among both kinds of objects over a large angular region in the Taurus cloud. In addition, we examine the spatial distribution of stars and BD relative to the underlying molecular gas Methods. In this paper, we present new and updated photometry data from the Infrared Array Camera (IRAC) aboard the Spitzer Space Telescope on 43 BDs in the Taurus cloud, and recalculate of the BD disk fraction in this region. We also useed recently available CO mm data to study the spatial distribution of stars and BDs relative to the cloud's molecular gas. Results. We find that the disk fraction among BDs in the Taurus cloud is 41 \pm 12%, a value statistically consistent with the one among TTS (58 \pm 9%). We find that BDs in transition from a state where they have a disk to a diskless state are rare, and we study one isolated example of a transitional disk with an inner radius of \approx 0.1 AU (CFHT BD Tau 12, found via its relatively small mid-IR excess compared to most members of Taurus that have disks. We find that BDs are statistically found in regions of similar molecular gas surface density to those associated with stars. Furthermore, we find that the gas column density distribution is almost identical for stellar and substellar objects with and without disks.Comment: 8 page, 6 figures, Accepted in Astronomy & Astrophysics

    X-ray view of IC348 in the light of an updated cluster census

    Full text link
    We study the properties of the coronae of the low-mass stars in the young (~2-3Myr), nearby (~310pc) open cluster IC348 combining X-ray and optical/infrared data. The four existing Chandra observations of IC348 are merged, thus providing a deeper and spatially more complete X-ray view than previous X-ray studies of the cluster. We have compiled a comprehensive catalog of IC348 members taking into account recent updates to the cluster census. Our data collection comprises fundamental stellar parameters, infrared excess indicating the presence of disks, Halpha emission as a tracer of chromospheric emission or accretion and mass accretion rates. We have detected 290 X-ray sources in four merged Chandra exposures, of which 187 are associated with known cluster members. Only four of the X-ray sources are brown dwarfs (spectral type M6 and later). The detection rate is highest for diskless Class III stars and increases with stellar mass. This may be explained with higher X-ray luminosities for higher mass and later evolutionary stage that is evident in the X-ray luminosity functions. In particular, we find that for the lowest examined masses (0.1-0.25 Msun) there is a difference between the X-ray luminosity functions of accreting and non-accreting stars (classified on the basis of their Halpha emission strength) as well as those of disk-bearing and diskless stars (classified on the basis of the slope of the spectral energy distribution). These differences disappear for higher masses. This is related to our finding that the L_x/L_bol ratio is non-constant across the mass/luminosity sequence of IC348 with a decrease towards lower luminosity stars. Our analysis of an analogous stellar sample in the Orion Nebula Cluster suggests that the decline of L_x/L_ bol for young stars at the low-mass end of the stellar sequence is likely universal.Comment: Accepted for publication in Astronomy & Astrophysic

    A Spitzer IRAC Imaging Survey for T Dwarf Companions Around M, L, and T Dwarfs: Observations, Results, and Monte Carlo Population Analyses

    Full text link
    We report observational techniques, results, and Monte Carlo population analyses from a Spitzer Infrared Array Camera imaging survey for substellar companions to 117 nearby M, L, and T dwarf systems (median distance of 10 pc, mass range of 0.6 to \sim0.05 M\odot). The two-epoch survey achieves typical detection sensitivities to substellar companions of [4.5 {\mu}m] \leq 17.2 mag for angular separations between about 7" and 165". Based on common proper motion analysis, we find no evidence for new substellar companions. Using Monte Carlo orbital simulations (assuming random inclination, random eccentricity, and random longitude of pericenter), we conclude that the observational sensitivities translate to an ability to detect 600-1100K brown dwarf companions at semimajor axes greater than ~35 AU, and to detect 500-600K companions at semimajor axes greater than ~60 AU. The simulations also estimate a 600-1100K T dwarf companion fraction of < 3.4% for 35-1200 AU separations, and < 12.4% for the 500-600K companions, for 60-1000 AU separations.Comment: 35 pages, 6 figure

    Spitzer/IRAC Photometry of the Eta Chameleontis Association

    Full text link
    We present IRAC 3.6, 4.5, 5.8 and 8 micron photometry for the 17 A, K and M type members of the Eta Chameleontis association. These data show infrared excesses toward six of the 15 K and M stars, indicating the presence of circumstellar disks around 40% of the stars with masses of 0.1-1 solar mass. The two A-stars show no infrared excesses. The excess emission around one of the stars is comparable to the median excess for classical T Tauri stars in the Taurus association; the remaining five show comparatively weak excess emission. Taking into account published Halpha spectroscopy that shows that five of the six stars are accreting, we argue that the disks with weak mid-infrared excesses are disks in which the inner disks have been largely depleted of small grains by grain growth, or, in one case, the small grains have settled to the midplane. This suggests that Eta Cha has a much higher fraction of disks caught in the act of transitioning into optically thin disks than that measured in younger clusters and associations.Comment: Accepted to ApJ letter

    Accretion-ejection connection in the young brown dwarf candidate ISO-Cha1 217

    Get PDF
    As the number of observed brown dwarf outflows is growing it is important to investigate how these outflows compare to the well studied jets from young stellar objects. A key point of comparison is the relationship between outflow and accretion activity and in particular the ratio between the mass outflow and accretion rates (M˙out\dot{M}_{out}/M˙acc\dot{M}_{acc}). The brown dwarf candidate ISO-ChaI 217 was discovered by our group, as part of a spectro-astrometric study of brown dwarfs, to be driving an asymmetric outflow with the blue-shifted lobe having a position angle of ∌\sim 20∘^{\circ}. The aim here is to further investigate the properties of ISO-ChaI 217, the morphology and kinematics of its outflow, and to better constrain (M˙out\dot{M}_{out}/M˙acc\dot{M}_{acc}). The outflow is spatially resolved in the [SII]λλ6716,6731[SII]\lambda \lambda 6716,6731 lines and is detected out to ∌\sim 1\farcs6 in the blue-shifted lobe and ~ 1" in the red-shifted lobe. The asymmetry between the two lobes is confirmed although the velocity asymmetry is less pronounced with respect to our previous study. Using thirteen different accretion tracers we measure log(M˙acc\dot{M}_{acc}) [Msun_{sun}/yr]= -10.6 ±\pm 0.4. As it was not possible to measure the effect of extinction on the ISO-ChaI 217 outflow M˙out\dot{M}_{out} was derived for a range of values of Av_{v}, up to a value of Av_{v} = 2.5 mag estimated for the source extinction. The logarithm of the mass outflow (M˙out\dot{M}_{out}) was estimated in the range -11.7 to -11.1 for both jets combined. Thus M˙out\dot{M}_{out}/M˙acc\dot{M}_{acc} [\Msun/yr] lies below the maximum value predicted by magneto-centrifugal jet launching models. Finally, both model fitting of the Balmer decrements and spectro-astrometric analysis of the Hα\alpha line show that the bulk of the H I emission comes from the accretion flow.Comment: accepted by Astronomy & Astrophysic

    Discovery of a Planetary-Mass Brown Dwarf with a Circumstellar Disk

    Full text link
    Using the Hubble Space Telescope, the 4 m Blanco telescope at the Cerro Tololo Inter-American Observatory, and the Spitzer Space Telescope, we have performed deep imaging from 0.8 to 8 um of the southern subcluster in the Chamaeleon I star-forming region. In these data, we have discovered an object, Cha 110913-773444, whose colors and magnitudes are indicative of a very low-mass brown dwarf with a circumstellar disk. In a near-infrared spectrum of this source obtained with the Gemini Near-Infrared Spectrograph, the presence of strong steam absorption confirms its late-type nature (>=M9.5) while the shapes of the H- and K-band continua and the strengths of the Na I and K I lines demonstrate that it is a young, pre-main-sequence object rather than a field dwarf. A comparison of the bolometric luminosity of Cha 110913-773444 to the luminosities predicted by the evolutionary models of Chabrier and Baraffe and Burrows and coworkers indicates a mass of 8+7/-3 M_Jup, placing it fully within the mass range observed for extrasolar planetary companions (M<=15 M_Jup). The spectral energy distribution of this object exhibits mid-infrared excess emission at >5 um, which we have successfully modeled in terms of an irradiated viscous accretion disk with M'<=10e-12 M_sun/year. Cha 110913-773444 is now the least massive brown dwarf observed to have a circumstellar disk, and indeed is one of the least massive free-floating objects found to date. These results demonstrate that the raw materials for planet formation exist around free-floating planetary-mass bodies.Comment: 5 pages, accepted to Astrophysical Journal Letter

    New Low-Mass Stars and Brown Dwarfs with Disks in Lupus

    Full text link
    Using the Infrared Array Camera and the Multiband Imaging Photometer aboard the {\it Spitzer Space Telescope}, we have obtained images of the Lupus 3 star-forming cloud at 3.6, 4.5, 5.8, 8.0, and 24 \micron. We present photometry in these bands for the 41 previously known members that are within our images. In addition, we have identified 19 possible new members of the cloud based on red 3.6-8.0 \micron colors that are indicative of circumstellar disks. We have performed optical spectroscopy on 6 of these candidates, all of which are confirmed as young low-mass members of Lupus 3. The spectral types of these new members range from M4.75 to M8, corresponding to masses of 0.2-0.03 M⊙M_\odot for ages of ∌1\sim1 Myr according to theoretical evolutionary models. We also present optical spectroscopy of a candidate disk-bearing object in the vicinity of the Lupus 1 cloud, 2M 1541-3345, which Jayawardhana & Ivanov recently classified as a young brown dwarf (M∌0.03M\sim0.03 M⊙M_\odot) with a spectral type of M8. In contrast to their results, we measure an earlier spectral type of M5.75±\pm0.25 for this object, indicating that it is probably a low-mass star (M∌0.1M\sim0.1 M⊙M_\odot). In fact, according to its gravity-sensitive absorption lines and its luminosity, 2M 1541-3345 is older than members of the Lupus clouds (τ∌1\tau\sim1 Myr) and instead is probably a more evolved pre-main-sequence star that is not directly related to the current generation of star formation in Lupus.Comment: 18 pages, 3 tables, 6 figure

    On the MBM12 Young Association

    Get PDF
    I present a comprehensive study of the MBM12 young association (MBM12A). By combining infrared (IR) photometry from the Two-Micron All-Sky Survey (2MASS) survey with new optical imaging and spectroscopy, I have performed a census of the MBM12A membership that is complete to 0.03 Msun (H~15) for a 1.75deg X 1.4deg field encompassing the MBM12 cloud. I find five new members with masses of 0.1-0.4 Msun and a few additional candidates that have not been observed spectroscopically. From an analysis of optical and IR photometry for stars in the direction of MBM12, I identify M dwarfs in the foreground and background of the cloud. By comparing the magnitudes of these stars to those of local field dwarfs, I arrive at a distance modulus 7.2+/-0.5 (275 pc) to the MBM12 cloud; it is not the nearest molecular cloud and is not inside the local bubble of hot ionized gas as had been implied by previous distance estimates of 50-100 pc. I have also used Li strengths and H-R diagrams to constrain the absolute and relative ages of MBM12A and other young populations; these data indicate ages of 2 +3/-1 Myr for MBM12A and 10 Myr for the TW Hya and Eta Cha associations. MBM12A may be a slightly evolved version of the aggregates of young stars within the Taurus dark clouds (~1 Myr) near the age of the IC 348 cluster (~2 Myr).Comment: to be published in The Astrophysical Journal, 41 pages, 14 figures, also found at http://cfa-www.harvard.edu/sfgroup/preprints.htm

    IRAC Observations of Taurus Pre-Main Sequence Stars

    Full text link
    We present infrared photometry obtained with the IRAC camera on the Spitzer Space Telescope of a sample of 82 pre-main sequence stars and brown dwarfs in the Taurus star-forming region. We find a clear separation in some IRAC color-color diagrams between objects with and without disks. A few ``transition'' objects are noted, which correspond to systems in which the inner disk has been evacuated of small dust. Separating pure disk systems from objects with remnant protostellar envelopes is more difficult at IRAC wavelengths, especially for objects with infall at low rates and large angular momenta. Our results generally confirm the IRAC color classification scheme used in previous papers by Allen et al. and Megeath et al. to distinguish between protostars, T Tauri stars with disks, and young stars without (inner) disks. The observed IRAC colors are in good agreement with recent improved disk models, and in general accord with models for protostellar envelopes derived from analyzing a larger wavelength region. We also comment on a few Taurus objects of special interest. Our results should be useful for interpreting IRAC results in other, less well-studied star-forming regions.Comment: 29 pages 10 figures, to appear in Ap

    AzTEC 1.1 mm Observations of the MBM12 Molecular Cloud

    Get PDF
    We present 1.1 mm observations of the dust continuum emission from the MBM12 high-latitude molecular cloud observed with the Astronomical Thermal Emission Camera (AzTEC) mounted on the James Clerk Maxwell Telescope on Mauna Kea, Hawaii. We surveyed a 6.34 deg2^2 centered on MBM12, making this the largest area that has ever been surveyed in this region with submillimeter and millimeter telescopes. Eight secure individual sources were detected with a signal-to-noise ratio of over 4.4. These eight AzTEC sources can be considered to be real astronomical objects compared to the other candidates based on calculations of the false detection rate. The distribution of the detected 1.1 mm sources or compact 1.1 mm peaks is spatially anti-correlated with that of the 100 micronm emission and the 12^{12}CO emission. We detected the 1.1 mm dust continuum emitting sources associated with two classical T Tauri stars, LkHalpha262 and LkHalpha264. Observations of spectral energy distributions (SEDs) indicate that LkHalpha262 is likely to be Class II (pre-main-sequence star), but there are also indications that it could be a late Class I (protostar). A flared disk and a bipolar cavity in the models of Class I sources lead to more complicated SEDs. From the present AzTEC observations of the MBM12 region, it appears that other sources detected with AzTEC are likely to be extragalactic and located behind MBM12. Some of these have radio counterparts and their star formation rates are derived from a fit of the SEDs to the photometric evolution of galaxies in which the effects of a dusty interstellar medium have been included.Comment: 8 pages, 6 figures, The Astrophysical Journal, in pres
    • 

    corecore