117 research outputs found

    Molecular Valves for Controlling Gas Phase Transport Made from Discrete Angstrom-Sized Pores in Graphene

    Full text link
    An ability to precisely regulate the quantity and location of molecular flux is of value in applications such as nanoscale 3D printing, catalysis, and sensor design. Barrier materials containing pores with molecular dimensions have previously been used to manipulate molecular compositions in the gas phase, but have so far been unable to offer controlled gas transport through individual pores. Here, we show that gas flux through discrete angstrom-sized pores in monolayer graphene can be detected and then controlled using nanometer-sized gold clusters, which are formed on the surface of the graphene and can migrate and partially block a pore. In samples without gold clusters, we observe stochastic switching of the magnitude of the gas permeance, which we attribute to molecular rearrangements of the pore. Our molecular valves could be used, for example, to develop unique approaches to molecular synthesis that are based on the controllable switching of a molecular gas flux, reminiscent of ion channels in biological cell membranes and solid state nanopores.Comment: to appear in Nature Nanotechnolog

    Ultrathin Oxide Films by Atomic Layer Deposition on Graphene

    Full text link
    In this paper, a method is presented to create and characterize mechanically robust, free standing, ultrathin, oxide films with controlled, nanometer-scale thickness using Atomic Layer Deposition (ALD) on graphene. Aluminum oxide films were deposited onto suspended graphene membranes using ALD. Subsequent etching of the graphene left pure aluminum oxide films only a few atoms in thickness. A pressurized blister test was used to determine that these ultrathin films have a Young's modulus of 154 \pm 13 GPa. This Young's modulus is comparable to much thicker alumina ALD films. This behavior indicates that these ultrathin two-dimensional films have excellent mechanical integrity. The films are also impermeable to standard gases suggesting they are pinhole-free. These continuous ultrathin films are expected to enable new applications in fields such as thin film coatings, membranes and flexible electronics.Comment: Nano Letters (just accepted

    Multi-ethnic GWAS and meta-analysis of sleep quality identify MPP6 as a novel gene that functions in sleep center neurons

    Get PDF
    Poor sleep quality can have harmful health consequences. Although many aspects of sleep are heritable, the understandings of genetic factors involved in its physiology remain limited. Here, we performed a genome-wide association study (GWAS) using the Pittsburgh Sleep Quality Index (PSQI) in a multi-ethnic discovery cohort (n = 2868) and found two novel genome-wide loci on chromosomes 2 and 7 associated with global sleep quality. A meta-analysis in 12 independent cohorts (100 000 individuals) replicated the association on chromosome 7 between NPY and MPP6. While NPY is an important sleep gene, we tested for an independent functional role of MPP6. Expression data showed an association of this locus with both NPY and MPP6 mRNA levels in brain tissues. Moreover, knockdown of an orthologue of MPP6 in Drosophila melanogaster sleep center neurons resulted in decreased sleep duration. With convergent evidence, we describe a new locus impacting human variability in sleep quality through known NPY and novel MPP6 sleep genes.Peer reviewe

    Transcriptomic Analysis in Diabetic Nephropathy of Streptozotocin-Induced Diabetic Rats

    Get PDF
    Diabetic nephropathy (DN) is a major complication of diabetes and is caused by an imbalance in the expression of certain genes that activate or inhibit vital cellular functions of kidney. Despite several recent advances, the pathogenesis of DN remains far from clear, suggesting the need to carry out studies identifying molecular aspects, such as gene expression, that could play a key role in the development of DN. There are several techniques to analyze transcriptome in living organisms. In this study, the suppression subtractive hybridization (SSH) method was used to generate up- and down-regulated subtracted cDNA libraries in the kidney of streptozotocin (STZ)-induced diabetic rats. Northern-blot analysis was used to confirm differential expression ratios from the obtained SSH clones to identify genes related to DN. 400 unique SSH clones were randomly chosen from the two subtraction libraries (200 of each) and verified as differentially expressed. According to blast screening and functional annotation, 20.2% and 20.9% of genes were related to metabolism proteins, 9% and 3.6% to transporters and channels, 16% and 6.3% to transcription factors, 19% and 17.2% to hypothetical proteins, and finally 24.1 and 17.2% to unknown genes, from the down- and up-regulated libraries, respectively. The down- and up-regulated cDNA libraries differentially expressed in the kidney of STZ diabetic rats have been successfully constructed and some identified genes could be highly important in DN

    Selective Molecular Sieving through Porous Graphene

    Full text link
    Membranes act as selective barriers and play an important role in processes such as cellular compartmentalization and industrial-scale chemical and gas purification. The ideal membrane should be as thin as possible to maximize flux, mechanically robust to prevent fracture, and have well-defined pore sizes to increase selectivity. Graphene is an excellent starting point for developing size selective membranes because of its atomic thickness, high mechanical strength, relative inertness, and impermeability to all standard gases. However, pores that can exclude larger molecules, but allow smaller molecules to pass through have to be introduced into the material. Here we show UV-induced oxidative etching can create pores in micrometre-sized graphene membranes and the resulting membranes used as molecular sieves. A pressurized blister test and mechanical resonance is used to measure the transport of a variety of gases (H2, CO2, Ar, N2, CH4, and SF6) through the pores. The experimentally measured leak rates, separation factors, and Raman spectrum agree well with models based on effusion through a small number of angstrom-sized pores.Comment: to appear in Nature Nanotechnolog

    Genome-wide association meta-analyses to identify common genetic variants associated with hallux valgus in Caucasian and African Americans

    Get PDF
    Objective Hallux valgus (HV) affects ∼36% of Caucasian adults. Although considered highly heritable, the underlying genetic determinants are unclear. We conducted the first genome-wide association study (GWAS) aimed to identify genetic variants associated with HV. Methods HV was assessed in three Caucasian cohorts (n=2263, n=915 and n=1231 participants, respectively). In each cohort, a GWAS was conducted using 2.5 M imputed SNPs. Mixed-effect regression with the additive genetic model adjusted for age, sex, weight and within-family correlations was used for both sex-specific and combined analyses. To combine GWAS results across cohorts, fixed-effect inverse-variance meta-analyses were used. Following meta-analyses, top-associated findings were also examined in an African American cohort (n=327). Results The proportion of HV variance explained by genome-wide genotyped SNPs was 50% in men and 48% in women. A higher proportion of genetic determinants of HV were sex specific. The most significantly associated SNP in men was rs9675316 located on chr17q23-a24 near the AXIN2 gene (p=0.000000546×10−7); the most significantly associated SNP in women was rs7996797 located on chr13q14.1-q14.2 near the ESD gene (p=0.000000721×10−7). Genome-wide significant SNP-by-sex interaction was found for SNP rs1563374 located on chr11p15.1 near the MRGPRX3 gene (interaction p value =0.0000000041×10−9). The association signals diminished when combining men and women. Conclusions The findings suggest that the potential pathophysiological mechanisms of HV are complex and strongly underlined by sex-specific interactions. The identified genetic variants imply contribution of biological pathways observed in osteoarthritis as well as new pathways, influencing skeletal development and inflammation

    Progress from ASDEX Upgrade experiments in preparing the physics basis of ITER operation and DEMO scenario development

    Get PDF

    Progress from ASDEX Upgrade experiments in preparing the physics basis of ITER operation and DEMO scenario development

    Get PDF
    An overview of recent results obtained at the tokamak ASDEX Upgrade (AUG) is given. A work flow for predictive profile modelling of AUG discharges was established which is able to reproduce experimental H-mode plasma profiles based on engineering parameters only. In the plasma center, theoretical predictions on plasma current redistribution by a dynamo effect were confirmed experimentally. For core transport, the stabilizing effect of fast ion distributions on turbulent transport is shown to be important to explain the core isotope effect and improves the description of hollow low-Z impurity profiles. The L-H power threshold of hydrogen plasmas is not affected by small helium admixtures and it increases continuously from the deuterium to the hydrogen level when the hydrogen concentration is raised from 0 to 100%. One focus of recent campaigns was the search for a fusion relevant integrated plasma scenario without large edge localised modes (ELMs). Results from six different ELM-free confinement regimes are compared with respect to reactor relevance: ELM suppression by magnetic perturbation coils could be attributed to toroidally asymmetric turbulent fluctuations in the vicinity of the separatrix. Stable improved confinement mode plasma phases with a detached inner divertor were obtained using a feedback control of the plasma β. The enhanced D α H-mode regime was extended to higher heating power by feedback controlled radiative cooling with argon. The quasi-coherent exhaust regime was developed into an integrated scenario at high heating power and energy confinement, with a detached divertor and without large ELMs. Small ELMs close to the separatrix lead to peeling-ballooning stability and quasi continuous power exhaust. Helium beam density fluctuation measurements confirm that transport close to the separatrix is important to achieve the different ELM-free regimes. Based on separatrix plasma parameters and interchange-drift-Alfvén turbulence, an analytic model was derived that reproduces the experimentally found important operational boundaries of the density limit and between L- and H-mode confinement. Feedback control for the X-point radiator (XPR) position was established as an important element for divertor detachment control. Stable and detached ELM-free phases with H-mode confinement quality were obtained when the XPR was moved 10 cm above the X-point. Investigations of the plasma in the future flexible snow-flake divertor of AUG by means of first SOLPS-ITER simulations with drifts activated predict beneficial detachment properties and the activation of an additional strike point by the drifts

    Overview of physics studies on ASDEX Upgrade

    Get PDF
    The ASDEX Upgrade (AUG) programme, jointly run with the EUROfusion MST1 task force, continues to significantly enhance the physics base of ITER and DEMO. Here, the full tungsten wall is a key asset for extrapolating to future devices. The high overall heating power, flexible heating mix and comprehensive diagnostic set allows studies ranging from mimicking the scrape-off-layer and divertor conditions of ITER and DEMO at high density to fully non-inductive operation (q 95 = 5.5, ) at low density. Higher installed electron cyclotron resonance heating power 6 MW, new diagnostics and improved analysis techniques have further enhanced the capabilities of AUG. Stable high-density H-modes with MW m-1 with fully detached strike-points have been demonstrated. The ballooning instability close to the separatrix has been identified as a potential cause leading to the H-mode density limit and is also found to play an important role for the access to small edge-localized modes (ELMs). Density limit disruptions have been successfully avoided using a path-oriented approach to disruption handling and progress has been made in understanding the dissipation and avoidance of runaway electron beams. ELM suppression with resonant magnetic perturbations is now routinely achieved reaching transiently . This gives new insight into the field penetration physics, in particular with respect to plasma flows. Modelling agrees well with plasma response measurements and a helically localised ballooning structure observed prior to the ELM is evidence for the changed edge stability due to the magnetic perturbations. The impact of 3D perturbations on heat load patterns and fast-ion losses have been further elaborated. Progress has also been made in understanding the ELM cycle itself. Here, new fast measurements of and E r allow for inter ELM transport analysis confirming that E r is dominated by the diamagnetic term even for fast timescales. New analysis techniques allow detailed comparison of the ELM crash and are in good agreement with nonlinear MHD modelling. The observation of accelerated ions during the ELM crash can be seen as evidence for the reconnection during the ELM. As type-I ELMs (even mitigated) are likely not a viable operational regime in DEMO studies of 'natural' no ELM regimes have been extended. Stable I-modes up to have been characterised using -feedback. Core physics has been advanced by more detailed characterisation of the turbulence with new measurements such as the eddy tilt angle - measured for the first time - or the cross-phase angle of and fluctuations. These new data put strong constraints on gyro-kinetic turbulence modelling. In addition, carefully executed studies in different main species (H, D and He) and with different heating mixes highlight the importance of the collisional energy exchange for interpreting energy confinement. A new regime with a hollow profile now gives access to regimes mimicking aspects of burning plasma conditions and lead to nonlinear interactions of energetic particle modes despite the sub-Alfvénic beam energy. This will help to validate the fast-ion codes for predicting ITER and DEMO
    corecore