112 research outputs found

    CCR5: From Natural Resistance to a New Anti-HIV Strategy

    Get PDF
    The C-C chemokine receptor type 5 (CCR5) is a key player in HIV infection due to its major involvement in the infection process. Investigations into the role of the CCR5 coreceptor first focused on its binding to the virus and the molecular mechanisms leading to the entry and spread of HIV. The identification of naturally occurring CCR5 mutations has allowed scientists to address the CCR5 molecule as a promising target to prevent or limit HIV infection in vivo. Naturally occurring CCR5-specific antibodies have been found in exposed but uninfected people, and in a subset of HIV seropositive people who show long-term control of the infection. This suggests that natural autoimmunity to the CCR5 coreceptor exists and may play a role in HIV control. Such natural immunity has prompted strategies aimed at achieving anti-HIV humoral responses through CCR5 targeting, which will be described here

    Frequency and phenotype of B cell subpopulations in young and aged HIV-1 infected patients receiving ART

    Get PDF
    BACKGROUND: Aged individuals respond poorly to vaccination and have a higher risk of contracting infections in comparison to younger individuals; whether age impacts on the composition and function of B cell subpopulations relevant for immune responses is still controversial. It is also not known whether increased age during HIV-1 infection further synergizes with the virus to alter B cell subpopulations. In view of the increased number of HIV-1 infected patients living to high age as a result of anti-retroviral treatment this is an important issue to clarify. RESULTS: In this work we evaluated the distribution of B cell subpopulations in young and aged healthy individuals and HIV-1 infected patients, treated and naïve to treatment. B cell populations were characterized for the expression of inhibitory molecules (PD-1 and FcRL4) and activation markers (CD25 and CD69); the capacity of B cells to respond to activation signals through up-regulation of IL-6 expression was also evaluated. Increased frequencies of activated and tissue-like memory B cells occurring during HIV-1 infection are corrected by prolonged ART therapy. Our findings also reveal that, in spite of prolonged treatment, resting memory B cells in both young and aged HIV-1 infected patients are reduced in number, and all memory B cell subsets show a low level of expression of the activation marker CD25. CONCLUSIONS: The results of our study show that resting memory B cells in ART-treated young and aged HIV-1 infected patients are reduced in number and memory B cell subsets exhibit low expression of the activation marker CD25. Aging per se in the HIV-1 infected population does not worsen impairments initiated by HIV-1 in the memory B cell populations of young individuals. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12977-014-0076-x) contains supplementary material, which is available to authorized users

    Setting of Methods for Analysis of Mucosal Antibodies in Seminal and Vaginal Fluids of HIV Seropositive Subjects from Cambodian and Italian Cohorts

    Get PDF
    International audienceBACKGROUND: Genital mucosae play a key role in protection from STD and HIV infection, due to their involvement in both horizontal and vertical disease transmission. High variability of published observations concerning IgA isolation and quantification underlies the strong requirement of specific methods able to maximize investigation on HIV-specific IgA. METHODOLOGY: Genital fluids from 109 subjects, including male and female cohorts from Italy and Cambodia, were collected, aliquoted and processed with different techniques, to assess optimal conditions maximizing mucosal antibody recovery. Three sampling techniques, up to sixteen preservation conditions, six ELISA methods and four purifications protocols were compared. PRINCIPAL FINDINGS: The optimal method here described took advantage of Weck-Cel sampling of female mucosal fluids. Immediate processing of genital fluids, with the addition of antibiotics and EDTA, improved recovery of vaginal IgA, while the triple addition of EDTA, antibiotics and protease inhibitors provided the highest amount of seminal IgA. Due to low amount of IgA in mucosal fluids, a high sensitive sandwich ELISA assay was set; sensitivity was enhanced by milk-based overcoating buffer and by a two-step biotin-streptavidin signal amplification. Indeed, commercial antisera to detect human immunoglobulins showed weak cross-reactivity to different antibody types. Three-step affinity purification provided reproducible immunoglobulin recovery from genital specimens, while conventional immuno-affinity IgA purification was found poorly manageable. Affinity columns were suitable to isolate mucosal IgA, which are ten-fold less concentrated than IgG in genital specimens, and provided effective separation of IgA monomers, dimers, and J-chains. Jacalin-bound resin successfully separated IgA1 from IgA2 subfraction. CONCLUSIONS/SIGNIFICANCE: Specific, effective and reliable methods to study local immunity are key items in understanding host mucosal response. The sequence of methods here described is effective and reliable in analysing humoral local responses, and may provide a solid advance to identify and measure the effective mucosal responses to HIV

    Broad-Spectrum Inhibition of HIV-1 by a Monoclonal Antibody Directed against a gp120-Induced Epitope of CD4

    Get PDF
    To penetrate susceptible cells, HIV-1 sequentially interacts with two highly conserved cellular receptors, CD4 and a chemokine receptor like CCR5 or CXCR4. Monoclonal antibodies (MAbs) directed against such receptors are currently under clinical investigation as potential preventive or therapeutic agents. We immunized Balb/c mice with molecular complexes of the native, trimeric HIV-1 envelope (Env) bound to a soluble form of the human CD4 receptor. Sera from immunized mice were found to contain gp120-CD4 complex-enhanced antibodies and showed broad-spectrum HIV-1-inhibitory activity. A proportion of MAbs derived from these mice preferentially recognized complex-enhanced epitopes. In particular, a CD4-specific MAb designated DB81 (IgG1Κ) was found to preferentially bind to a complex-enhanced epitope on the D2 domain of human CD4. MAb DB81 also recognized chimpanzee CD4, but not baboon or macaque CD4, which exhibit sequence divergence in the D2 domain. Functionally, MAb DB81 displayed broad HIV-1-inhibitory activity, but it did not exert suppressive effects on T-cell activation in vitro. The variable regions of the heavy and light chains of MAb DB81 were sequenced. Due to its broad-spectrum anti-HIV-1 activity and lack of immunosuppressive effects, a humanized derivative of MAb DB81 could provide a useful complement to current preventive or therapeutic strategies against HIV-1

    M48U1 and Tenofovir combination synergistically inhibits HIV infection in activated PBMCs and human cervicovaginal histocultures

    Get PDF
    Microbicides are considered a promising strategy for preventing human immunodeficiency virus (HIV-1) transmission and disease. In this report, we first analyzed the antiviral activity of the miniCD4 M48U1 peptide formulated in hydroxyethylcellulose (HEC) hydrogel in activated peripheral blood mononuclear cells (PBMCs) infected with R5-and X4-Tropic HIV-1 strains. The results demonstrate that M48U1 prevented infection by several HIV-1 strains including laboratory strains, and HIV-1 subtype B and C strains isolated from the activated PBMCs of patients. M48U1 also inhibited infection by two HIV-1 transmitted/founder infectious molecular clones (pREJO.c/2864 and pTHRO.c/2626). In addition, M48U1 was administered in association with tenofovir, and these two antiretroviral drugs synergistically inhibited HIV-1 infection. In the next series of experiments, we tested M48U1 alone or in combination with tenofovir in HEC hydrogel with an organ-like structure mimicking human cervicovaginal tissue. We demonstrated a strong antiviral effect in absence of significant tissue toxicity. Together, these results indicate that co-Treatment with M48U1 plus tenofovir is an effective antiviral strategy that may be used as a new topical microbicide to prevent HIV-1 transmission

    Malaria in an asylum seeker paediatric liver transplant recipient: diagnostic challenges for migrant population

    Get PDF
    Transplanted patients are particularly exposed to a major risk of infectious diseases due to prolonged immunosuppressive treatment. Over the last decade, the growing migration flows and the transplant tourism have led to increasing infections caused by geographically restricted organisms. Malaria is an unusual event in organ transplant recipients than can be acquired primarily or reactivation following immunosuppression, by transfusion of blood products or through the transplanted organ. We report a rare case of Plasmodium falciparum infection in a liver transplanted two years-old African boy who presented to one Italian Asylum Seeker Center on May 2019. We outlined hereby diagnostic challenges, possible aetiologies of post-transplantation malaria and finally we summarized potential drug interactions between immunosuppressive agents and antimalarials. This report aims to increase the attention to newly arrived migrants, carefully evaluating patients coming from tropical areas and taking into consideration also rare tropical infections not endemic in final destination countries

    Different decay of antibody response and VOC sensitivity in naïve and previously infected subjects at 15 weeks following vaccination with BNT162b2

    Get PDF
    Background: COVID-19 vaccines have demonstrated effectiveness in reducing SARS-CoV-2 mild and severe outcomes. In vaccinated subjects with SARS-CoV-2 history, RBD-specific IgG and pseudovirus neutralization titers were rapidly recalled by a single BTN162b2 vaccine dose to higher levels than those in naïve recipients after the second dose, irrespective of waning immunity. In this study, we inspected the long-term kinetic and neutralizing responses of S-specific IgG induced by two administrations of BTN162b2 vaccine in infection-naïve subjects and in subjects previously infected with SARS-CoV-2. Methods: Twenty-six naïve and 9 previously SARS-CoV-2 infected subjects during the second wave of the pandemic in Italy were enrolled for this study. The two groups had comparable demographic and clinical characteristics. By means of ELISA and pseudotyped-neutralization assays, we investigated the kinetics of developed IgG-RBD and their neutralizing activity against both the ancestral D614G and the SARS-CoV-2 variants of concern emerged later, respectively. The Wilcoxon matched pair signed rank test and the Kruskal–Wallis test with Dunn’s correction for multiple comparison were applied when needed. Results: Although after 15 weeks from vaccination IgG-RBD dropped in all participants, naïve subjects experienced a more dramatic decline than those with previous SARS-CoV-2 infection. Neutralizing antibodies remained higher in subjects with SARS-CoV-2 history and conferred broad-spectrum protection. Conclusions: These data suggest that hybrid immunity to SARS-CoV-2 has a relevant impact on the development of IgG-RBD upon vaccination. However, the rapid decay of vaccination-elicited antibodies highlights that the administration of a third dose is expected to boost the response and acquire high levels of cross-neutralizing antibodies

    Natural anti-CCR5 antibodies in HIV-infection and -exposure

    Get PDF
    Natural antibodies constitute a first-line of defence against pathogens; they may also play other roles in immune regulation and homeostasis, through their ability to bind host antigens, surface molecules and receptors. Natural anti-CCR5 antibodies can be decisive in preventing HIV infection in mucosal tissues and offer prompt and effective protection just at major sites of virus entry. Among natural anti-CCR5 antibodies, IgG and IgA to the ECL1 domain have been shown to block HIV effectively and durably without causing harm to the host. Their biological properties and their uncommon generation in subsets of HIV-infected and HIV-exposed individuals (so called ESN) will be introduced and discussed, with the aim at exploiting their potential in therapy and prevention
    corecore