8 research outputs found

    EGFR Mutation Promotes Glioblastoma through Epigenome and Transcription Factor Network Remodeling

    No full text
    Epidermal growth factor receptor (EGFR) gene amplification and mutations are the most common oncogenic events in glioblastoma (GBM), but the mechanisms by which they promote aggressive tumor growth are not well understood. Here, through integrated epigenome and transcriptome analyses of cell lines, genotyped clinical samples, and TCGA data, we show that EGFR mutations remodel the activated enhancer landscape of GBM, promoting tumorigenesis through a SOX9 and FOXG1-dependent transcriptional regulatory network in vitro and in vivo. The most common EGFR mutation, EGFRvIII, sensitizes GBM cells to the BET-bromodomain inhibitor JQ1 in a SOX9, FOXG1-dependent manner. These results identify the role of transcriptional/epigenetic remodeling in EGFR-dependent pathogenesis and suggest a mechanistic basis for epigenetic therapy

    Target Selection for the DESI Peculiar Velocity Survey

    No full text
    International audienceWe describe the target selection and characteristics of the DESI Peculiar Velocity Survey, the largest survey of peculiar velocities (PVs) using both the fundamental plane (FP) of galaxies and the Tully-Fisher (TF) relationship planned to date. We detail how we identify suitable early-type galaxies for the FP and suitable late-type galaxies for the TF relation using the photometric data provided by the DESI Legacy Imaging Survey DR9. Subsequently, we provide targets for 373 533 early-type galaxies and 118 637 late-type galaxies within the DESI 5-year footprint. We validate these photometric selections using existing morphological classifications. Furthermore, we demonstrate using survey validation data that DESI is able to measure the spectroscopic properties to sufficient precision to obtain PVs for our targets. Based on realistic DESI fiber assignment simulations and spectroscopic success rates, we predict the final DESI Peculiar Velocity Survey will obtain \sim133 000 FP-based and \sim53 000 TF-based PV measurements over an area of 14 000 deg2\mathrm{deg^{2}}. Each of these components will be a factor of 4--5 larger than other recent samples. We forecast the ability of using these data to measure the clustering of galaxy positions and peculiar velocities from the combined DESI PV and Bright Galaxy Surveys (BGS), which allows for cancellation of cosmic variance at low redshifts. With these forecasts, we anticipate a 4%4\% statistical measurement on the growth rate of structure at z<0.15z<0.15. This is over two times better than achievable with redshifts from the BGS alone. The combined DESI PV and Bright Galaxy surveys will enable the most precise tests to date of the time and scale dependence of large-scale structure growth at z<0.15z<0.15

    EGFR Mutation Promotes Glioblastoma through Epigenome and Transcription Factor Network Remodeling

    No full text
    Epidermal Growth Factor Receptor (EGFR) gene amplification and mutations are the most common oncogenic events in Glioblastoma (GBM), but the mechanisms by which they promote aggressive tumor growth are not well understood. Here, through integrated epigenome and transcriptome analyses of cell lines, genotyped clinical samples and TCGA data, we show that EGFR mutations remodel the activated enhancer landscape of GBM, promoting tumorigenesis through a SOX9 and FOXG1-dependent transcriptional regulatory network in vitro and in vivo. The most common EGFR mutation, EGFRvIII, sensitizes GBM cells to the BET-bromodomain inhibitor JQ1 in a SOX9, FOXG1-dependent manner. These results identify the role of transcriptional/epigenetic remodeling in EGFR-dependent pathogenesis and suggest a mechanistic basis for epigenetic therapy

    HIV-associated distal neuropathic pain is associated with smaller total cerebral cortical gray matter

    No full text
    Despite modern antiretroviral therapy, HIV-associated sensory neuropathy affects over 50% of HIV patients. The clinical expression of HIV neuropathy is highly variable: many individuals report few symptoms, but about half report distal neuropathic pain (DNP), making it one of the most prevalent, disabling and treatment-resistant complications of HIV disease. The presence and intensity of pain is not fully explained by the degree of peripheral nerve damage, making it unclear why some patients do, and others do not, report pain. To better understand central nervous system contributions to HIV DNP, we performed a cross-sectional analysis of structural magnetic resonance imaging (MRI) volumes in 241 HIV-infected participants from an observational multi-site cohort study at five US sites (CNS HIV Antiretroviral Treatment Effects Research Study, CHARTER). The association between DNP and the structural imaging outcomes was investigated using both linear and nonlinear (Gaussian Kernel support vector) multivariable regression, controlling for key demographic and clinical variables. Severity of DNP symptoms was correlated with smaller total cerebral cortical gray matter volume (R = −0.24; p = 0.004). Understanding the mechanisms for this association between smaller total cortical volumes and DNP may provide insight into HIV DNP chronicity and treatment-resistance
    corecore