388 research outputs found

    Experiences and perspectives of implementing antimicrobial stewardship in five French hospitals: a qualitative study

    Get PDF
    Objective To describe current antimicrobial stewardship program (ASP) in France, both at policy level and at local implementation level, and to assess how ASP leaders (ASPL) worked and prioritised their activities. Methods We conducted a qualitative study based on face-to-face semi-structured interviews with healthcare professionals responsible for ASP across five French hospitals. Five infectious disease specialists and one microbiologist were interviewed between April and June 2016. Results Stewards had dedicated time to perform ASP activities in two university-affiliated hospitals while in the other hospitals (one university, one general and one semi-private), ASPLs had to balance these activities with clinical practice. Consequently, they had to adapt interventions according to their resources (IT or human). Responding to colleagues' consultation requests formed baseline work. Systematic and pro-active measures allowed for provision of unsolicited counselling, while direct counselling on wards required appropriate staffing. ASPL aimed at increasing clinicians' ability to prescribe adequately and awareness of the unintended consequences of inappropriate use of antibiotics. Thus, persuasive e.g. education measures were preferred to coercive ones. ASPL faced several challenges in implementing ASP: overcoming physicians' or units' reluctance, and balancing the influence of medical hierarchy and professional boundaries. Conclusion Beyond resources constraints, ASPLs' conceptions of their work, as well as contextual and cultural aspects, led them to adopt a persuasive and collaborative approach of counselling. This is the first qualitative study about ASP in France exploring stewards' experiences and points of view

    Granulovirus PK-1 kinase activity relies on a side-to-side dimerization mode centered on the regulatory αC helix

    Get PDF
    The life cycle of Baculoviridae family insect viruses depends on the viral protein kinase, PK-1, to phosphorylate the regulatory protein, p6.9, to induce baculoviral genome release. Here, we report the crystal structure of Cydia pomenella granulovirus PK-1, which, owing to its likely ancestral origin among host cell AGC kinases, exhibits a eukaryotic protein kinase fold. PK-1 occurs as a rigid dimer, where an antiparallel arrangement of the αC helices at the dimer core stabilizes PK-1 in a closed, active conformation. Dimerization is facilitated by C-lobe:C-lobe and N-lobe:N-lobe interactions between protomers, including the domain-swapping of an N-terminal helix that crowns a contiguous β-sheet formed by the two N-lobes. PK-1 retains a dimeric conformation in solution, which is crucial for catalytic activity. Our studies raise the prospect that parallel, side-to-side dimeric arrangements that lock kinase domains in a catalytically-active conformation could function more broadly as a regulatory mechanism among eukaryotic protein kinases

    Structure of shocks in Burgers turbulence with L\'evy noise initial data

    Full text link
    We study the structure of the shocks for the inviscid Burgers equation in dimension 1 when the initial velocity is given by L\'evy noise, or equivalently when the initial potential is a two-sided L\'evy process ψ0\psi_0. When ψ0\psi_0 is abrupt in the sense of Vigon or has bounded variation with lim suph0h2ψ0(h)=\limsup_{|h| \downarrow 0} h^{-2} \psi_0(h) = \infty, we prove that the set of points with zero velocity is regenerative, and that in the latter case this set is equal to the set of Lagrangian regular points, which is non-empty. When ψ0\psi_0 is abrupt we show that the shock structure is discrete. When ψ0\psi_0 is eroded we show that there are no rarefaction intervals.Comment: 22 page

    A robust methodology to subclassify pseudokinases based on their nucleotide-binding properties

    Get PDF
    Protein kinase-like domains that lack conserved residues known to catalyse phosphoryl transfer, termed pseudokinases, have emerged as important signalling domains across all kingdoms of life. Although predicted to function principally as catalysis-independent protein-interaction modules, several pseudokinase domains have been attributed unexpected catalytic functions, often amid controversy. We established a thermal-shift assay as a benchmark technique to define the nucleotide-binding properties of kinase-like domains. Unlike in vitro kinase assays, this assay is insensitive to the presence of minor quantities of contaminating kinases that may otherwise lead to incorrect attribution of catalytic functions to pseudokinases. We demonstrated the utility of this method by classifying 31 diverse pseudokinase domains into four groups: devoid of detectable nucleotide or cation binding; cation-independent nucleotide binding; cation binding; and nucleotide binding enhanced by cations. Whereas nine pseudokinases bound ATP in a divalent cation-dependent manner, over half of those examined did not detectably bind nucleotides, illustrating that pseudokinase domains predominantly function as non-catalytic protein-interaction modules within signalling networks and that only a small subset is potentially catalytically active. We propose that henceforth the thermal-shift assay be adopted as the standard technique for establishing the nucleotide-binding and catalytic potential of kinase-like domains
    corecore