47 research outputs found

    Advancing urban mental health research: from complexity science to actionable targets for intervention

    Get PDF
    Urbanisation and common mental disorders (CMDs; ie, depressive, anxiety, and substance use disorders) are increasing worldwide. In this Review, we discuss how urbanicity and risk of CMDs relate to each other and call for a complexity science approach to advance understanding of this interrelationship. We did an ecological analysis using data on urbanicity and CMD burden in 191 countries. We found a positive, non-linear relationship with a higher CMD prevalence in more urbanised countries, particularly for anxiety disorders. We also did a review of meta-analytic studies on the association between urban factors and CMD risk. We identified factors relating to the ambient, physical, and social urban environment and showed differences per diagnosis of CMDs. We argue that factors in the urban environment are likely to operate as a complex system and interact with each other and with individual city inhabitants (including their psychological and neurobiological characteristics) to shape mental health in an urban context. These interactions operate on various timescales and show feedback loop mechanisms, rendering system behaviour characterised by non-linearity that is hard to predict over time. We present a conceptual framework for future urban mental health research that uses a complexity science approach. We conclude by discussing how complexity science methodology (eg, network analyses, system-dynamic modelling, and agent-based modelling) could enable identification of actionable targets for treatment and policy, aimed at decreasing CMD burdens in an urban context

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    An example of applied colour vision research: the conspicuity of airplane colour

    No full text
    This paper describes the application of the combined knowledge on colorimetry, colour imaging (visualization) and colour perception in an aviation related research project. It involves the optimisation of the conspicuity of the colour scheme of an airplane, with the purpose of minimizing the changes of a mid-air collision. Subjects determined the conspicuity (here defined as object detection in the visual periphery) of different airplane colours at a simulated distance of 1 km and for different simulated atmospheric visibilities. Results indicate that the conspicuity depends on the lightness difference between the airplane and its background, but not on the difference in hue or saturatio

    Separate processing of chromatic and achromatic contrast in color constancy

    No full text
    Voortbordurend op eerder onderzoek naar het fenomeen ' kleurkonstantie' wordt in deze studie een model afgeleid waarin kleurcontrast en helderheidscontrast gescheiden worden behandel

    Dynamic simulation of color blindness for studying color vision requirements in practice

    No full text
    We report on a dynamic simulation of defective color vision. Using an RGB video camera connected to a PC or laptop, the captured and displayed RGB colors are translated by our software into modified RGB values that simulate the color appearance of a person with a color deficiency. Usually, the simulation of deficient color vision is restricted to static images and to dichromats (lacking one cone type). We are now able to also simulate color blindness in near real time video, and for both dichromats and anomalous trichromats. We discuss how these techniques were applied in a field study into color vision requirements in Dutch maritime practice and present visualization examples thereof

    A universal color image quality metric

    No full text
    We extend a recently introduced universal grayscale image quality index to a newly developed perceptually decorrelated color space. The resulting color image quality index quantifies the distortion of a processed color image relative to its original version. We evaluated the new color image quality metric through observer experiments in which subjects ranked images according to perceived distortion. The metric correlates strongly with human perception and can therefore be used to assess the performance of color image coding and compression schemes, color image enhancement algorithms, synthetic color image generators, and color image fusion schemes
    corecore