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Adding texture to color:  quantitative analysis of color 

emotions 

Marcel P. Lucassen, Theo Gevers, Arjan Gijsenij; Intelligent System Laboratory Amsterdam, University of Amsterdam; 

Amsterdam, The Netherlands 

 

Abstract 
What happens to color emotion responses when texture is 

added to color samples? To quantify this we performed an 

experiment in which subjects ordered samples (displayed on a 

computer monitor) along four scales: Warm-Cool, Masculine-

Feminine, Hard-Soft and Heavy-Light. Three sample types 

were used: uniform color, grayscale textures and color 

textures. Ten subjects arranged 315 samples (105 per sample 

type) along each of the four scales. After one week, they 

repeated the full experiment. The effect of adding texture to 

color samples is that color remains dominant for the Warm-

Cool, Heavy-Light and Masculine-Feminine scale (in  order of 

descending dominance), the importance of texture increases in 

that same order. The Hard-Soft scale is fully dominated by 

texture. The average intra-observer variability (between the 

first and second measurement) was 0.73, 0.66 and 0.65 for the 

uniform color, grayscale texture and color texture samples, 

respectively. The average inter-observer variability (between 

an observer and the other observers) was 0.68, 0.77 and 0.65, 

respectively. Using some 25,000 observer responses, we 

derived analytical functions for each sample type and emotion 

scale (except for the Warm-Cool scale on grayscale textures). 

These functions predict the group-averaged scale responses 

from the samples’ color and texture parameters.  For uniform 

color samples, the accuracy of our functions is significantly 

higher (average adjusted R2 = 0.88) than that of functions 

previously reported. For color texture, the average adjusted 

R2=0.80.  

 

Introduction  
There is growing interest in the understanding of human 

affective feelings in response to seeing colors. The so called 

‘color emotions’ (i.e. emotional responses to color) involved in 

published studies do usually not refer to basic human emotions 

like happiness, surprise or fear. Rather, they capture the 

response on an associated affective dimension specified by the 

investigators and may therefore be anything. Color emotion 

studies  recently published (e.g. [1]-[3]) have focused on the 

selection of emotional scales and how they interrelate (by 

means of factor analysis). Regression analysis shows the 

relationships of these scales with the underlying color 

appearance attributes (lightness, chroma and hue). Additionally 

the question whether color emotions can be regarded as culture 

specific or universal has been studied [1], [3]-[6]. Roughly 

summarizing the published studies on color emotion, the 

common finding is that the color emotions are reasonably well 

described by a small number of semantic factors, like for 

instance colour weight, colour activity and colour heat in [1]. 

Of the perceptual attributes, lightness and chroma are most 

frequently reported as being the relevant parameters for 

quantitative prediction of the color emotions, although hue 

cannot be ignored in scales like warm-cool.  

So far, the role of texture in color emotion has received 

only little attention. An early study by Tinker [7] showed that 

surface texture, as represented by coated paper or cloth, had 

little or no effect upon apparent warmth or affective value of 

colors.  Kim et al. [8] used color and texture features to predict 

human emotions based on textile images. Erhart & Irtel [9] 

indicate that surface structure can change the emotional effect 

of colored textile samples, depending upon the color. More 

recently, Simmons & Russell [10] reported that the addition of 

texture can significantly change the perceived unpleasantness of 

colors, depending on the texture class.  

This paper reports on our study into the effect of texture 

on color emotion. Our systematic experiments build upon-, but 

differ in a number of ways from previous studies. Most 

importantly, instead of only studying uniformly colored 

samples, we also use samples with grayscale textures and color 

textures. These textures were synthesized to prevent biased 

responses such as reported in [10]. Second, we introduce a 

method in which all samples (shown on a computer display) 

maintain visible during experimental trials so that they can be 

ordered conveniently along an emotion scale. Third, our 

subjects performed the full experiment twice, with at least one 

week in between the first and second measurement. This allows 

quantification of the intra-observer variability over time, on 

which we are the first to report. We believe that repeatability 

information is at least as important as the information obtained 

from more observers. Finally, we sampled the available color 

gamut of our display in a very systematic manner to optimally 

cover both lightness, chroma and hue.  

We analyze our data in terms of rank correlations within 

subjects and between subjects and provide quantitative 

descriptions. We derive color and texture emotion formulae that 

predict the  group-averaged responses on the emotion scales 

from the samples’ color and texture descriptors. 

Methods 
One of the problems we encountered in a pilot experiment 

is that when samples are shown one after the other, subjects 

tend to forget what responses they gave on the emotion scales 

for similar samples shown earlier in the trial. This leads to an 

unnecessary increase in variability in the subjects’ responses, 

and therefore lower intra- and inter-observer correlations. To 

overcome this we designed our experiment in such a way that 

all samples maintain visible during a trial. We asked our 

subjects to order 105 square samples horizontally along an 

emotion scale labeled with opposite word pairs, using the 

computer mouse to drag samples from their initial location on 

the top of the screen. Samples could be dragged to any position 

on the screen to allow the subjects to keep an overview of the 

arrangement of the samples. Subjects knew that only the 
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horizontal position of the samples on the scale would be  

analyzed.  

Four emotion scales (Warm-Cool, Masculine-Feminine, 

Hard-Soft and Heavy-Light), in four different trials, were used. 

There were three conditions differing only in the type of 

samples. In the Uniform Color (UC) condition, uniformly 

colored samples were used that were systematically selected 

from the sRGB color gamut. In the Grayscale Texture (GT) 

condition the samples had a texture created in luminance, but 

not in the chromatic domain. Textures were generated using 

Perlin noise [11]. The third condition (Color Texture, CT) 

added a single color to the grayscale textures.  

Examples of results obtained for these three conditions are 

shown in Figure 1.  

 

Sample Selection 

Uniform Color 
The color monitor we used to display the samples was 

calibrated to the sRGB color space. Within the sRGB color 

gamut we selected 100 chromatic samples and 5 achromatic 

samples. Chromatic samples were selected at 5 lightness levels 

(L*=10,30,50,70,90). For each of these levels in L*, 10 hue 

angles were selected at 36 degree interval (h=0, 36, 72, …, 288, 

324). Finally, for each of these hue angles two levels in C* 

were selected, being the maximum value within the sRGB 

gamut, denoted by C*max, and C*max/2. Five additional 

achromatic samples were selected at L*=20, 40, 60, 80, 100.  

Grayscale and Color Texture  
At this point in our research we did not want to use natural 

textures to avoid the possibility of strong inherent emotional 

associations. Therefore, we synthesized textures on the basis of 

Perlin noise [11]. Perlin noise is a primitive structure used in 

procedural texture generation, and is pseudo-random in 

appearance. All visual details in Perlin noise are the same size, 

which means that theoretically such an image can be said to 

truly represent a single texture. Perlin noise can be fully 

parameterized implying that we can reliably generate a random 

sample of textures by randomly sampling from the Perlin 

parameter space. Through controlling the number of octaves, 

the frequency of each octave and the amplitude of each octave 

we can respectively control the level of detail, the granularity 

and the contrast of the resulting texture. The Grayscale 

Textures were achromatic, having only spatial variations in 

lightness L*. Our Color Texture samples were colored versions 

of the Grayscale Textures (see Fig. 1).  

Emotional Scale Selection 
Contrary to previous studies, our primary aim is not to find 

out which scales are most appropriate to capture color 

emotions, but rather to explore the effects of adding texture to 

color samples. We therefore selected four scales with opposite 

word-pairs that have been frequently used in previous studies 

and for which we also gained experimental confidence in our 

pilot studies. These scales are Warm-Cool, Masculine-

Feminine, Hard-Soft and Heavy-Light. The Warm-Cool scale 

was not used for the Grayscale Texture samples, because 

subjects found this combination very hard, if not impossible. 

With the exception of the scale Masculine-Feminine, 

quantitative descriptions of the scales on the basis of CIELAB 

parameters are available from previous studies, which enable us 

to compare results.  

Subjects 
Ten subjects participated in the experiments, 6 men and 4 

women. Their ages ranged from 26 to 53, with an average of 

31.9. Subjects were from 7 different nationalities: Dutch (4), 

Chinese (1), Russian (1), Italian (1), Spanish (1), Polish (1)  

and German (1). All subjects had normal color vision and 

normal or corrected to normal visual acuity. Subjects were 

screened for color vision deficiencies with the HRR pseudo-

isochromatic plates (4th edition), allowing color vision testing 

along both the red-green and yellow-blue axes of color space 

[12]. The HRR test was viewed under prescribed lighting (CIE 

illuminant C) using the True Daylight Illuminator (Richmond 

Products, Inc.), while illumination by other light sources was 

reduced to a minimum. The first author also participated as a 

subject in the experiment; the other subjects were unaware of 

the purposes of the experiment. Subjects participated on 

voluntary basis and did not receive a financial reward; they 

were all employed or studying at the institute where the 

experiment was carried out.  

Monitor 
Stimuli were presented on a high-resolution (1600x1200 

pixels, 0.27 mm dot pitch) calibrated LCD monitor, an Eizo 

ColorEdge CG211. The monitor was driven by a computer 

system having a 24-bit (RGB) color graphics card operating at a 

60 Hz refresh rate. Colorimetric calibration of the LCD was 

performed before each experimental session using the Eye-one 

spectrophotometer (GretagMacbeth). The monitor was 

calibrated to a D65 white point of 80 cd/m2, with gamma 2.2 

for each of the three color primaries. The CIE 1931 x,y 

chromaticities coordinates of the primaries were (x,y) = (0.638, 

0.322) for red, (0.299, 0.611) for green and (0.145, 0.058) for 

blue, respectively. With these settings of our monitor we 

closely approximate the sRGB standard monitor profile [13]. 

Spatial uniformity of the display, measured relative to the 

center of the monitor, was ∆E*ab< 1.5 according to the 

manufacturer’s calibration certificates. 

 

Procedure 
Subjects were seated in front of the monitor at a viewing 

distance of about 60 cm. The screen size extended 39.6° x 30.2° 

visual angle, and a sample 2.6° x 2.6°. Samples were initially 

displayed in random order at the top of the screen. Subjects 

dragged the samples away from their initial position to give 

them a relative ordering along the horizontal emotion scale. 

Subjects knew that only the horizontal position would be 

analyzed, the vertical space could be used to keep an overview 

of the samples. After ordering the first group of 50 samples, 

subjects pressed a button that showed the second group of 55 

samples (the first 50 samples remained visible). During a trial 

all samples could be re-ordered if desired. On average, one trial 

of 105 samples took about 5-10 minutes. All subjects repeated 

the experiment with at least one week in between the first and 

the second measurement. 
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Results  
Examples of the results for a single observer are shown in Fig. 

1. Actual scale values for the samples were calculated from 

their horizontal midpoints. Throughout this paper we use ranks 

(i.e. a relative order from the left side to the right side of the 

scale) and rank correlations rather than the absolute scale 

values, because the scales are not expected to be linear. An 

additional advantage of using ranks is that it corrects for 

individual differences in the used scale range. For instance, one 

subject may use the full scale range to position the samples, 

while another subject may use only 75% of that range. 

Statistical analyses were performed with the Statgraphics 

Centurion XV software package. 

 

Figure 1a. Experimental result (data from a single observer) for the 

Uniform Color samples, ordered horizontally along the Masculine – 

Feminine scale. Only the horizontal position matters. At a viewing distance 

of 60 cm, the screen size extended 39.6° x 30.2° visual angle, and one 

sample 2.6° x 2.6°. The 100 chromatic patches systematically sampled the 

sRGB color gamut at 5 lightness levels, 10 hue levels, and 2 chroma levels. 

Additionally, 5 achromatic samples were used. 

 

Figure 1b. Experimental result for the Grayscale Texture samples, ordered 

horizontally along the Heavy – Light scale. Data from a single observer. 

 

    

 

 

 

 

 

 

Figure 1c. Experimental result for the Color Texture samples, ordered 

horizontally along the Warm – Cool scale. Data from a single observer. 

 

Intra-observer agreement  
For each observer, sample type and emotion scale, we 

determined the rank correlation between the first and second 

measurement (Table 1). This correlation is a measure for the 

intra-observer agreement, or in other words, the repeatability. 

For 105 samples, the critical value of the correlation coefficient 

is about 0.195 at the 95% confidence level. Table 1 shows that 

the correlation between the first and second measurement is 

highly significant, for all subjects and all conditions, except for 

subject 6 on the Heavy-Light scale for the Grayscale Texture 

samples. For the Uniform Color samples the correlation 

averaged over subjects and emotion scales is 0.73, which is 

higher than the corresponding values for the Grayscale Texture 

samples (0.66) and the Color Texture samples (0.65). 

Apparently, subjects reproduce their color emotional responses 

on uniform samples better than on textured samples. Averaged 

over the three sample types, the highest intra-observer 

agreement is found for the Warm-Cool scale (r=0.74), followed 

by Heavy-Light (0.70), Masculine-Feminine (0.69) and Hard-

Soft (0.60). Considering that the second measurement was 

made about one week after the first measurement, these intra-

observer values seem satisfactory. Unfortunately, it is 

impossible to compare this result with other studies. 

Table 1: Intra-observer agreement. Shown are the 

correlation coefficients between rank orders of the first and 

second measurement. WC=Warm-Cool, MF=Masculine-

Feminine, HS=Hard-Soft, HL=Heavy-Light, avg=average. 

 

 

CGIV 2010 Final Program and Proceedings 7



 

 

 

Inter-observer agreement 
How well do observers agree with each other? In principle 

it is possible to calculate the correlation between rank orders 

for a single observer with each of the other observers, but this 

amounts to a lot of data. Instead we prefer to calculate the 

correlation between rank orders produced by each observer 

(averaged over the first and second measurement) and the 

average of all other observers in the group. This data is shown 

in Table 2.  

Table 2: Inter-observer agreement. Shown are the 

correlation coefficients between rank orders of a single 

observer with the average of the other observers. 

WC=Warm-Cool, MF=Masculine-Feminine, HS=Hard-Soft, 

HL=Heavy-Light, avg=average. Avg=average. 

 

 

Taking a look at the data in Table 2, we note that the 

average inter-observer correlation is 0.68 for the Uniform Color 

samples, 0.77 for the Grayscale Texture samples and 0.65 for 

the Color Texture samples, respectively. Apparently observers 

agree best on the Grayscale Texture samples. One salient result 

on the Uniform Color samples is that subjects 2, 4, 9 and 10 

have low correlations with the group average on the Hard-Soft 

scale. This turned out to be partly attributable to the positioning 

of the dark samples along the scale. Further analysis showed 

that the standard deviation in the subject responses shows a 

minimum at L*+C*=100 and a more than two-fold increase at 

lower and higher values. Obviously, dark colors and saturated 

colors lead to lower agreement among subjects. This was found 

to apply to both the Warm-Cool and Hard-Soft scale.  

It is impossible to state that the four observers indicated 

above did not do the experiment right, or that they should be 

regarded as outliers. Their correlation coefficients calculated 

between the first and second measurement (0.67, 0.32, 0.86 and 

0.56, respectively) indicate that three of the four observers were 

able to replicate their results fairly well.   

 

Before discussing the results of adding texture to the color 

samples we first present the results of regression analysis. This 

provides color emotion formulae with which we can more 

easily explain the effects of texture. 

 

Quantitative analysis: color and texture 
emotion formulae 

The goal of this section is to derive quantitative formulae 

that describe the color and texture emotions as a function of the 

samples’ color and texture parameters. As a first step, we 

performed one-way ANOVA’s to find out which of the 

parameters are significantly connected to the emotion scales.  

Using both the results of the one-way ANOVAs and formulas 

derived in previous studies [1] as a starting point, we derived 

analytical functions that gave the highest amounts of variance 

explained on the color emotion scales. The resulting functions 

are shown in Table 3. These functions predict the activity on 

the emotion scales, based on the color parameters L*,C*,h 

and/or the texture parameters octaves, frequency, persistence 

and lacunarity. The models were derived on the group averaged 

scale values. A negative scale value indicates a response 

towards the left word of the opposite word-pair (e.g. warm on 

the warm-cool scale), a positive value indicates a response 

towards the right word (e.g. cool on the warm-cool scale). A 

value of zero indicates neutral, i.e. exactly in the middle of the 

scale.  

 

Table 3: Color and texture emotion formulae and 

percentages of explained variance. The adjusted R
2
 

measure already accounts for the number of free 

parameters in the formulae. The functions predict the 

activity on the emotion scales based on the CIELAB color 

parameters L*,C*,h and/or the texture parameters (oct=nr of 

octaves, freq=frequency, pers=persistence, lac=lacunarity). 

WC=warm-cool, MF=masculine-feminine, HS=hard-soft, 

HL=heavy-light. For the Color Texture samples, the table 

reports three values for the adjusted R
2
. The first value 

relates to the function derived on the Color Texture 

samples, the second value relates to the function derived 

on the Uniform Color samples, and the third value relates to 

the functions derived for the Grayscale Texture samples, 

respectively. 

 

Sample 

Type 

Function Adjusted R
2
 Avg R

2
 

WCUC 90.1 

MFUC 83.2 

HSUC 81.5 

Uniform 

Color (UC) 

HLUC 98.1 

88.2 

MFGT 82.5 

HSGT 84.0 

Grayscale 

Texture 

(GT) HLGT 80.4 

82.3 

WCCT 84.4 / 81.5 / - 

MFCT 75.8 / 39.6 / 0.0 

HSCT 72.5 / 0.0 / 48.8 

Color 

Texture 

(CT) 
HLCT 86.2 / 58.7 / 0.0 

79.7 

 

 

The Table shows that for the Uniform Color samples, the 

functions based on the CIELAB parameters L*, C* and h give 

rise to high values of adjusted R2, with an average of 88.2. For 
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the Grayscale Texture samples, the average is just 82.3. For the 

Color Texture samples, three values for the adjusted R2 are 

reported. The first value relates to the function derived on the 

Color Texture samples, the second value relates to the function 

derived on the Uniform Color samples, and the third value 

relates to the functions derived for the Grayscale Texture 

samples, respectively. They show the relative importance of the 

color and texture parameters. On average, the adjusted R2 for 

the Color Texture functions is 79.7.  

 

All in all, the color and texture emotion functions provide 

a reasonably accurate description of the average observer 

responses.  Uniform Color samples are best described, followed 

by Grayscale Texture and Color Texture. We now return to our 

main research question: what is the effect of texture on the 

color emotion scales?      

The effects of texture on color emotion 
We have already noted that the intra-observer agreement 

for the Uniform Color samples is higher than for the textured 

samples. At the same time, the inter-observer agreement is 

better for the grayscale samples than for the uniform samples 

and the color texture samples. The latter may be due to the fact 

that greyscale textures have no color, and so the observers have 

to deal with less dimensions.  

The analytical functions presented in Table 3 reflect the 

dependencies on the samples’ color and texture parameters. The 

color parameters L*, C* and h play an important role in all UC-

functions, with the exception that C* does not appear in the 

function for the Heavy-Light scale. When looking at the 

functions for the Color Texture samples, we observe that 1) all 

color parameters L*,C* and h are present in the Warm-Cool 

and Masculine-Feminine scales, 2) only L* and C* appear in 

the Heavy-Light scale and 3) no color parameters appear in the 

function for the Hard-Soft scale. So, when texture is added to 

the uniform color samples, only the Hard-Soft scale loses its 

dependency on color parameters. In other words, Hard-Soft is 

fully dominated by texture. Warm-Cool, Masculine-Feminine 

and Heavy-Light are dominated by color parameters (in order 

of descending dominance), but need the texture parameters to 

explain for another 2.9%, 36.2% and 27.5% of the variance in 

the data, respectively. 

 

Comparison with other studies 
We can evaluate the performance of color emotion 

functions derived by others on our own experimental data, but 

only for the Uniform Color samples. Functions for grayscale or 

color texture samples have not been published previously. For 

the scales Warm-Cool, Hard-Soft and Heavy-Light we 

determined the adjusted R2 for models derived by Sato et al. 

[14] and Ou et al. [1], see Table 4. The results show that our 

experimental data for the Heavy-Light scale (which heavily 

depend on lightness L*) is very well described by all three 

models.  For the Warm-Cool scale, the model by Ou et al. [1] is 

good (R2=0.70), but the model by Xin & Cheng [15] 

completely fails. For the Hard-Soft scale both models from Ou 

et al. and Xin & Cheng fail. An explanation for this may be the 

different methodologies used for obtaining the observer scores. 

In our experiments the subjects put the samples in relative order 

along the scale, whereas the other investigators only record the 

preference for one of the scale directions (for instance warm or 

cool). In the latter case, a final scale value is obtained by 

averaging over the scores of the observers, and therefore many 

observers are necessary. 

 

Table 4: Performance (adjusted R
2
) of color emotion models 

by different investigators on our experimental data for the 

uniform color samples. 

Emotion 

Scale 

Present  

study 

Out et al.  

(2004) 

Xin & 

Cheng 

(2000) 

Warm - Cool 0.90 0.70 0.14 

Hard - Soft 0.82 0.16+ 0.36 

Heavy - Light 0.98 0.96 0.96 

    + excluding the 5 five achromatic samples. When including 

these samples (having C*=0), there is no correlation between 

our data and the model prediction by Ou et al. [1]. 

 

Discussion 
We have demonstrated a systematic approach to the study 

of color emotions and the effect thereupon of adding texture to 

the color samples. A limited number of scales (four) was used 

because we were mainly interested in the specific effect of 

adding texture, and not so much in factor analysis that reveals 

how different scales may combine into new descriptors. 

Nevertheless, we have gathered a valuable set of experimental 

data using an improved methodology in which subjects ordered 

the samples along the scale while maintaining a view on all 

samples. Another methodological improvement in comparison 

to other studies is that our subjects repeated the experimental 

trials after one week which provided us with an estimate of the 

intra-observer agreement. We derived analytical functions that 

predict the group-averaged scale responses, with a precision 

exceeding that reported in other studies. The adjusted R2 

measure is the preferred measure to report, since that one 

corrects the R2 for the number of free parameters in the 

functions.  

Our subjects were from seven different nationalities. 

Testing on cross-cultural effects, as done in other studies, was 

not performed since that would require more subjects. Neither 

did we test on gender differences. Again, our focus was on the 

effect of adding texture, not on other issues. In the experimental 

design we adopted the minimum number of observers (10) as 

discussed in [16]). As long as the desired scale precision is 

unknown it is impossible to make precise estimates on the 

required number of observers. All that can be said is that the 

use of more subjects leads to lower standard deviations in the 

estimates. Scale accuracy increase with about the square root of 

the number of observers. Other studies have used more subjects 

(e.g. [1] used 31 observers, [2] used 70 observers, [3] used 50-

70 observers per cultural group) but we preferred to perform a 

repetition of the full experiment, which we regard equally 

important. An interesting question is what the subjects’ long 

term repeatability on the color and texture emotion scales is. 

That kind of information would greatly help to assess the 

validity and applicability of the color and texture formulae 

derived here. 
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