29 research outputs found

    Catecholaminergic modulation of indices of cognitive flexibility:a pharmaco-tDCS study

    Get PDF
    Background: Dopaminergic activity within the dorsolateral prefrontal cortex (dlPFC) has been implicated in the control of cognitive flexibility. Much of the evidence for a causative relationship between cognitive flexibility and dopamine has come from animal studies, whilst human data have largely been correlational. Objective/Hypothesis:The current study examines whether changes in dopamine levels through tyrosine administration and suppression of dlPFC activity via cathodal tDCS could be causally related to cognitive flexibility as measured by task switching and reversal learning. Methods: Using a crossover, double-blind, sham controlled, counterbalanced, randomized trial, we tested the effects of combining cathodal tDCS with tyrosine, a catecholaminergic precursor, with appropriate drug and tDCS placebo controls, on two measures of cognitive flexibility: probabilistic reversal learning, and task switching. Results: While none of the manipulations had an effect on task switching, there was a significant main effect of cathodal tDCS and tyrosine on reversal learning. Reversal learning performance was significantly worsened by cathodal tDCS compared with sham tDCS, whilst tyrosine significantly improved performance compared with placebo. However, there was no significant tDCS × drugs interaction. Interestingly, and as predicted by our model, the combined administration of tyrosine with cathodal tDCS resulted in performance that was equivalent to the control condition (i.e. tDCS sham + placebo). Conclusions: Our results suggest a causative role for dopamine signalling and dorsolateral prefrontal cortex activity in regulating indices of cognitive flexibility in humans

    Behavioral flexibility is increased by optogenetic inhibition of neurons in the nucleus accumbens shell during specific time segments

    Get PDF
    Behavioral flexibility is vital for survival in an environment of changing contingencies. The nucleus accumbens may play an important role in behavioral flexibility, representing learned stimulus–reward associations in neural activity during response selection and learning from results. To investigate the role of nucleus accumbens neural activity in behavioral flexibility, we used light-activated halorhodopsin to inhibit nucleus accumbens shell neurons during specific time segments of a bar-pressing task requiring a win–stay/lose–shift strategy. We found that optogenetic inhibition during action selection in the time segment preceding a lever press had no effect on performance. However, inhibition occurring in the time segment during feedback of results—whether rewards or nonrewards—reduced the errors that occurred after a change in contingency. Our results demonstrate critical time segments during which nucleus accumbens shell neurons integrate feedback into subsequent responses. Inhibiting nucleus accumbens shell neurons in these time segments, during reinforced performance or after a change in contingencies, increases lose–shift behavior. We propose that the activity of nucleus shell accumbens shell neurons in these time segments plays a key role in integrating knowledge of results into subsequent behavior, as well as in modulating lose–shift behavior when contingencies change

    Dissociable effects of tryptophan supplementation on negative feedback sensitivity and reversal learning

    Get PDF
    Serotonin has been shown to modulate probabilistic reversal learning (PRL) and negative feedback sensitivity (NFS) in both animal and human studies. Whilst these two measures are tightly coupled, some studies have suggested that these may be mediated by independent mechanisms; the former, representing perseveration and cognitive flexibility, and the latter measuring the ability to maintain a response set (win-stay) at the expense of lose-shift behaviour when occasional misleading feedback has been presented. Here, we tested this hypothesis in 44 healthy participants who were administered tryptophan (22 placebo, 22 tryptophan), a presynaptic precursor to serotonin. We found a dissociable effect of tryptophan supplementation on PRL/NFS. Specifically, tryptophan administration increased NFS compared to the placebo group but had no effect on PRL. We discuss these findings in relation to presynaptic and postsynaptic mechanisms, receptor specificity, and dosage and with a particular focus on the acute tryptophan depletion (ATD) procedures

    Dopamine depletion effects on cognitive flexibility as modulated by tDCS of the dlPFC

    Get PDF
    Background Recent evidence suggests that transcranial direct current stimulation (tDCS) may interact with the dopaminergic system to affect cognitive flexibility. Objective/hypotheses: We examined whether putative reduction of dopamine levels through the acute phenylalanine/tyrosine depletion (APTD) procedure and excitatory anodal tDCS of the dorsolateral prefrontal cortex (dlPFC) are causally related to cognitive flexibility as measured by task switching and reversal learning. Method A double-blind, sham-controlled, randomised trial was conducted to test the effects of combining anodal tDCS and depletion of catecholaminergic precursor tyrosine on cognitive flexibility. Results Anodal tDCS and tyrosine depletion had a significant effect on task switching, but not reversal learning. Whilst perseverative errors were significantly improved by anodal tDCS, the APTD impaired reaction times. Importantly, the combination of APTD and anodal tDCS resulted in cognitive performance which did not statistically differ to that of the control condition. Conclusions Our results suggest that the effects of tDCS on cognitive flexibility are modulated by dopaminergic tone

    Distribution and inter-regional relationship of amyloid-beta plaque deposition in a 5xFAD mouse model of Alzheimer’s disease

    Get PDF
    Alzheimer’s disease (AD) is the most common form of dementia. Although previous studies have selectively investigated the localization of amyloid-beta (Aβ) deposition in certain brain regions, a comprehensive characterization of the rostro-caudal distribution of Aβ plaques in the brain and their inter-regional correlation remain unexplored. Our results demonstrated remarkable working and spatial memory deficits in 9-month-old 5xFAD mice compared to wildtype mice. High Aβ plaque load was detected in the somatosensory cortex, piriform cortex, thalamus, and dorsal/ventral hippocampus; moderate levels of Aβ plaques were observed in the motor cortex, orbital cortex, visual cortex, and retrosplenial dysgranular cortex; and low levels of Aβ plaques were located in the amygdala, and the cerebellum; but no Aβ plaques were found in the hypothalamus, raphe nuclei, vestibular nucleus, and cuneate nucleus. Interestingly, the deposition of Aβ plaques was positively associated with brain inter-regions including the prefrontal cortex, somatosensory cortex, medial amygdala, thalamus, and the hippocampus. In conclusion, this study provides a comprehensive morphological profile of Aβ deposition in the brain and its inter-regional correlation. This suggests an association between Aβ plaque deposition and specific brain regions in AD pathogenesis

    The causal role between phasic midbrain dopamine signals and learning

    Get PDF
    The article discusses how phasic dopamine (DA) may relate to action selection, goal-directed behavior, and behavioral flexibility of a mice. It states that optogenetic targeting of midbrain DA cells and striatal projections showed role in reward prediction and behavioral flexibility. It notes that DA activity regulates aspects related to appetitive reward learning. It mentions that DA is causally involved in flexible behavioral adaptations that occur due to changes in stimulus-reward incident

    A Decade of Progress in Deep Brain Stimulation of the Subcallosal Cingulate for the Treatment of Depression

    Get PDF
    Major depression contributes significantly to the global disability burden. Since the first clinical study of deep brain stimulation (DBS), over 406 patients with depression have now undergone this neuromodulation therapy, and 30 animal studies have investigated the efficacy of subgenual cingulate DBS for depression. In this review, we aim to provide a comprehensive overview of the progress of DBS of the subcallosal cingulate in humans and the medial prefrontal cortex, its rodent homolog. For preclinical animal studies, we discuss the various antidepressant-like behaviors induced by medial prefrontal cortex DBS and examine the possible mechanisms including neuroplasticity-dependent/independent cellular and molecular changes. Interestingly, the response rate of subcallosal cingulate Deep brain stimulation marks a milestone in the treatment of depression. DBS among patients with treatment-resistant depression was estimated to be approximately 54% across clinical studies. Although some studies showed its stimulation efficacy was limited, it still holds great promise as a therapy for patients with treatment-resistant depression. Overall, further research is still needed, including more credible clinical research, preclinical mechanistic studies, precise selection of patients, and customized electrical stimulation paradigms

    Tyrosine negatively affects flexible-like behaviour under cognitively demanding conditions

    Get PDF
    Background: The catecholaminergic precursor to dopamine, tyrosine, is an important modulator of cognitive performance. A number of studies have demonstrated that the beneficial effects of tyrosine on cognitive performance are most pronounced when individuals are exposed to stressful situations, such as hypothermia. However, little is known about whether manipulation of stress using non-aversive stimuli, such as cognitive demand, can also bring about similar improvements. Methods: We conducted a randomized, double-blind, placebo-controlled experiment to test the effects of tyrosine administration and cognitive load (low or high) on cognitive flexibility, a measure known to be influenced by catecholaminergic function. A total of 70 healthy volunteers completed a baseline cognitive flexibility test (Wisconsin Card Sorting Test: WCST). Participants were given a dose of either tyrosine (2.0 g) or placebo (cellulose) and subject to either low cognitive load (simple reaction time task) or high cognitive load (digit memory span task), immediately followed by a WCST for a second time. Results: Contrary to expectations, we found that instead of ameliorating performance under the high cognitive load condition, tyrosine worsened cognitive flexibility. Limitations: Physiological marker of stress was not measured. Conclusions: Our results suggest that aversive stressors and cognitive demand modulate the effects of tyrosine on cognitive performance in a differential manner

    Impulsiveness, postprandial blood glucose and glucoregulation affect measures of behavioral flexibility

    Get PDF
    Behavioral flexibility (BF) performance is influenced by both psychological and physiological factors. Recent evidence suggests that impulsivity and blood glucose can affect executive function, of which BF is a subdomain. Here, we hypothesized that impulsivity, fasting blood glucose (FBG), glucose changes (i.e. glucoregulation) from postprandial blood glucose (PBG) following the intake of a 15g glucose beverage could account for variability in BF performance. The Stroop Color-Word Test and the Wisconsin Card Sorting Test (WCST) were used as measures of BF, and the Barratt Impulsiveness Scale (BIS-11) to quantify participants’ impulsivity. In Study 1, neither impulsivity nor FBG could predict performance on the Stroop or the WCST. In Study 2, we tested whether blood glucose levels following the intake of a sugary drink, and absolute changes in glucose levels following the intake of the glucose beverage could better predict BF. Results showed that impulsivity and the difference in blood glucose between time 1 (postprandial) and time 2, but not blood glucose levels at time 2 per se could account for variation in performance on the WCST but not on the Stroop task. More specifically, lower impulsivity scores on the BIS-11, and smaller differences in blood glucose levels from time 1 to time 2 predicted a decrease in the number of total and perseverative errors on the WCST. Our results show that measures of impulsivity and glucoregulation can be used to predict BF. Importantly our data extend the work on glucose and cognition to a clinically relevant domain of cognition
    corecore