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Research

Behavioral flexibility is increased by optogenetic
inhibition of neurons in the nucleus accumbens
shell during specific time segments

Luca Aquili,1,2,3 Andrew W. Liu,1 Mayumi Shindou,1 Tomomi Shindou,1

and Jeffery R. Wickens1

1Okinawa Institute of Science and Technology Graduate University, Neurobiology Research Unit, Onna-son, Japan 904-0495

Behavioral flexibility is vital for survival in an environment of changing contingencies. The nucleus accumbens may play an

important role in behavioral flexibility, representing learned stimulus–reward associations in neural activity during re-

sponse selection and learning from results. To investigate the role of nucleus accumbens neural activity in behavioral flex-

ibility, we used light-activated halorhodopsin to inhibit nucleus accumbens shell neurons during specific time segments of a

bar-pressing task requiring a win–stay/lose–shift strategy. We found that optogenetic inhibition during action selection in

the time segment preceding a lever press had no effect on performance. However, inhibition occurring in the time segment

during feedback of results—whether rewards or nonrewards—reduced the errors that occurred after a change in contin-

gency. Our results demonstrate critical time segments during which nucleus accumbens shell neurons integrate feedback

into subsequent responses. Inhibiting nucleus accumbens shell neurons in these time segments, during reinforced perfor-

mance or after a change in contingencies, increases lose–shift behavior. We propose that the activity of nucleus shell accum-

bens shell neurons in these time segments plays a key role in integrating knowledge of results into subsequent behavior, as

well as in modulating lose–shift behavior when contingencies change.

[Supplemental material is available for this article.]

Behavioral flexibility—the ability to change responses in accor-

dance with feedback of results—is crucial for adaptive behavior.

Tasks that include a switch in contingencies from a previously re-

inforced response to another response provide a sensitivemeasure

of behavioral flexibility (Bitterman 1975; Kehagia et al. 2010;

Rayburn-Reeves et al. 2013). The nucleus accumbens (NAcc) plays

an important role in several forms of behavioral flexibility, includ-

ing latent inhibition, attentional set shifting, and reversal learning

(SternandPassingham1995;Cools et al. 2006; Floresco et al. 2006;

O’Neill and Brown 2007), with the core and shell subregions of

the NAcc regulating separate components (Weiner et al. 1996;

Parkinson et al. 1999; Corbit et al. 2001; Ito et al. 2004; Cardinal

and Cheung 2005; Pothuizen et al. 2005a,c; Granon and Floresco

2009). Inactivation of NAcc shell prior to initial discrimination

learning improves performance of set shift behavior (Floresco

et al. 2006) and blocks latent inhibition (Weiner et al. 1996;

Jongen-Relo et al. 2002; Pothuizen et al. 2005b, 2006). The NAcc

shell plays a particular role in responses to changes in the incentive

value of conditioned stimuli (Floresco et al. 2008; Granon and

Floresco 2009), which may be important in different forms of

behavioral flexibility. Here we investigate the neural mechanisms

underlying behavioral flexibility in a task requiring a shift in re-

sponses after a contingency switch, using brief optogenetic inhibi-

tion to silence NAcc shell neurons in specific time segments.

At the cellular level, changes in the firing activity of NAcc

neurons are associated with different phases of behavior, in-

cludingpreparation and response, reward expectation, and reward

delivery (Carelli and Deadwyler 1994; Bowman et al. 1996; Carelli

et al. 2000; Hollerman et al. 2000). During the response prepara-

tion phase, anticipatory increases in firing related to reward ex-

pectation occur (Carelli and Deadwyler 1994; Carelli et al. 2000).

Similarly, phasic increases andmore prolonged decreases in firing

occur in response to a conditioned stimulus or the associated

approach response (Day et al. 2006). Later in the sequence, when

the outcome of the response is made known, some cells exhibit

excitation, while others exhibit inhibition (Carelli andDeadwyler

1994; Carelli et al. 2000). This activation and inhibition of differ-

ent neural subpopulations in the NAcc occurs in time segments

related to different phases of action, from decision to feedback of

results. Neural activity in these different time segments—response

selection, reward expectancy, and reward delivery—may therefore

play a specific causal role in response selection.

Correlation of activation and inhibition of neural activity

with behavior establishes the possibility of a causal relationship

between the neural activity and the behavior, but a causal rela-

tionship cannot be inferred from recording studies showing

only correlation. For example, behavior may cause the neural ac-

tivity, rather than the converse. To show a causal role of neural

activity during particular intervals it is necessary to manipulate

this activity on similar timescales to the recorded activations

and inhibitions. The recent introduction of optogenetic methods2Present address: Sunway University, Psychology Department,
Bandar Sunway, Malaysia
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has made it possible to modify ongoing neural activity on milli-

second timescales (Aravanis et al. 2007; Arenkiel et al. 2007;

Gradinaru et al. 2007, 2008; Zhang et al. 2008; Tsai et al. 2009;

Gunaydin et al. 2010; Liu and Tonegawa 2010; Lobo et al. 2010;

Zhang et al. 2010). This temporal precision of optogenetics makes

it possible to investigate the causal role of neural activity in differ-

ent time segments of a response on a second-by-second basis, ex-

tending previous work based on correlation of neural activity and

behavior (Tye et al. 2012; Nakamura et al. 2013; Steinberg et al.

2013). In particular, the light-activated halorhodopsin (Han and

Boyden 2007; Zhang et al. 2007; Gradinaru et al. 2008) provides

a means to optogenetically inhibit neurons in the rodent brain.

Recent developments support the use of halorhodopsin in rats

(Witten et al. 2011; Stefanik et al. 2012; Nakamura et al. 2013),

which have some advantages for testing behavioral flexibility

(Whishaw 1995; Cressant et al. 2007).

In the present study we investigated the effect on behavioral

flexibility of optogenetic inhibition of the NAcc shell neurons in

behaving rats during specific time segments related to task events.

Based on evidence that NAcc shell neurons encode the incentive

value of conditioned stimuli, we hypothesized that inhibition

during feedback of results would change the probability of a shift

in response after a switch in contingencies. To test this hypothesis

we used viral mediated gene transfer to express halorhodopsin in

neurons of the rat NAcc shell. We injected a lentiviral vector

(pLenti-hSyn-eNpHR3.0-EYFP) into the NAcc shell bilaterally

and implanted optic fibers above the injection sites on both sides.

A light-emitting diode (LED) delivered light to the optic fibers, so

that infected NAcc shell neurons were inhibited when the LED

was on. The LED was turned on or off in specific time segments

of a task in which contingencies switched several times during a

session. We used this approach to investigate the causal role of

NAcc shell neurons in integration of the results of previous re-

sponses into subsequent responses, focusing on the role of their

activity in specific time segments of the sequence of behavior.

Results

Functional expression of halorhodopsin in medium

spiny neurons
Halorhodopsinexpressionandopticalfiberplacement in theNAcc

shell was confirmed by histology in all animals at the end of the

experiments (Fig. 1). Cellular expression in the principal neurons

of the NAcc shell—the medium spiny neurons (MSNs)—was

shown by colocalization of yellow fluorescent protein (YFP) and

a specificmarker forMSNs (DARPP-32, dopamine and cyclic-aden-

osine monophospate responsive phosphoprotein of molecular

weight 32 kDa) that labels both D1 and D2 subtypes of MSN

(Bertran-Gonzalez et al. 2008; Matamales et al. 2009; Rajput

et al. 2009) (Fig. 2A). In total, 93% (114/122) of halorhodopsin-

expressing cells were MSNs, consistent with the percentage of

MSNs measured in the striatum by quantitative neuroanatomy

(Oorschot 1996). The infected neurons exhibited electrophysio-

logical characteristics of MSNs including inward rectification

and delayed action potential firing (Fig. 2B).

Functional expression of halorhodopsin was confirmed by

hyperpolarization of YEF-positive neurons on exposure to yellow

light for 1.5 sec or 10 sec (Fig. 2C). Illumination for 1.5 sec caused

hyperpolarization of 26.8mV below the restingmembrane poten-

tial on average (n ¼ 3), indicating strong inhibition. Actionpoten-

tial firing induced by strong depolarizing current was completely

stoppedby illumination (Fig. 2D). Control neurons (YFP-negative)

from outside the injected areas were not responsive to light

stimulation. Thus, optogenetic inhibition of MSNs was able to

block firing in response to excitatory currents which were many

times greater than synaptic inputs recorded in vivo (Wickens

andWilson 1998).

Experiment 1: Behavioral flexibility is increased

by inhibition during feedback
We investigated the effect on behavioral flexibility of optogenet-

ic inhibition during specific time segments of a task that in-

volved within-session switching of contingencies. Rats (n ¼ 8)

were trained to criterion on tasks of increasing difficulty, initially

learning to press one of two levers for an immediate food reward,

and then progressing through stages: between-session reversal,

single reversal within a session, and multiple reversals within a

session. In the final, multiple reversal testing sessions there were

80 rewards per session. After 20 rewards had been given on one

lever, the stimulus–reward contingencies were reversed so that

pressing on the other lever was required for reward delivery. Four

different stimulus–reward contingencies were tested in each ses-

sion, with the switching sequence counterbalanced. Rats had 90

minutes to complete the task, and could choose to lever press at

any time within a session.

Figure 1. Halorhodopsin expression and position of optical fibers in the NAcc shell. Location of maximal expression of halorhodopsin (eNpHR expres-
sion, left) and tips of optical fibers (right) are indicated by circles, color-coded by animal. Several animals showed halorhodopsin expression in multiple
sections. Halorhodopsin expression extended ≏300 mm in the medial–lateral and 400 mm in the dorsal–ventral directions.
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To investigate the role of neural activity in the NAcc shell

in different phases of their responses, rats were subjected to opto-

genetic inhibition by turning on the LED during specific time

segments (Fig. 3A). In the REWARDcondition, the LEDwas turned

on by a correct lever press and stayed on until reward collection.

In the ERROR condition, the LED was turned on after an incor-

rect lever press and stayed on for 1.5 sec. In the ILPI (inter lever-

press interval) condition, the LED was on throughout the

session, but turned off whenever the rat made a lever press. If

the lever press was correct the LED stayed off until reward col-

lection. If the lever press was incorrect the LED stayed off for

1.5 sec. Control conditions included leaving the LED off through-

out all sessions (OFF condition), or turning the LED on at random

for 1.5 sec every 30, 45, or 60 sec (RANDOM condition). In

addition, a separate group of rats received an inactive hal-

orhodopsin to control for direct effects of LED illumination. The

total time of LED illumination for each condition is shown in

Supplemental Table 1.

We first analyzed errors that occurred immediately after the

switch in contingencies at the end of each block of 20 rewards.

Such errors may be due to a failure to cease pressing an unrein-

forced lever and could be considered failure to implement a

lose–shift strategy. We found a main effect of LED condition

(F(1.29,9.05) ¼ 33.5, P, 0.001). We then made post-hoc compari-

sons of the error rate for each optogenetic manipulation

(ERROR, REWARD, ILPI, RANDOM, OFF). There was a significant

reduction in errors in REWARD or ERROR conditions compared

to the two control conditions (REWARD vs. OFF, P ¼ 0.002;

REWARD vs. RANDOM, P ¼ 0.001; ERROR vs. OFF, P ¼ 0.002;

ERROR vs. RANDOM, P ¼ 0.002) (Fig. 4A). The reduction in errors

inERRORandREWARDconditionswasalso significantwhencom-

pared to the ILPI condition (ERROR vs. ILPI, P ¼ 0.001; REWARD

vs. ILPI, P ¼ 0.001). There was no signifi-

cant difference between ILPI and control

conditions (ILPI vs. OFF, P ¼ 0.175; ILPI

vs. RANDOM, P ¼ 0.215) suggesting that

inhibition of activity in the decision

period preceding action selection had

no effect on the errors. These results sug-

gest that the activity of NAcc cells in

the time after action selection (lever-

pressing) until outcome (reward or non-

reward), corresponding to feedback of re-

ward or error results, is important for

lose–shift behavior.

To investigate whether win–stay

behavior was also affected, we analyzed

errors that occurred after the first correct

response. There was no significant main

effect of optogenetic manipulation on

lever-pressing errors that occurred after

the first correct response (Fig. 4B). We

then examined trial by trial whether the

optogenetic stimulated rats and controls

were learning the taskdifferently.A learn-

ing curve (Fig. 4C) showing cumulative

errors confirmed that the main effects

occurred in the errors after reversal. The

learning rate during rewarded correct

responding was similar across condi-

tions. These results indicate that win–

stay behavior was not affected by any of

the optogenetic manipulations.

We further examined the micro-

structure of learning by analyzing the

number of times the animal made an er-

ror and then chose the correct lever on the next trial, divided by

the total number of errors, as a percentage of the total number

of errors (lose–shift percentages). We also analyzed the number

of times the animal received a reward for pressing one lever and

then chose the same lever on the next trial, expressed as a per-

centage of the total number of rewards (win–stay percentages).

Consistent with the statistical analysis of the number of errors be-

tween contingency shifts, lose–shift percentages were higher in

the REWARD (62.1%) and ERROR (61.6%) conditions than in

the ILPI (49.4%) or OFF (45.1%) conditions. In contrast, win–

stay percentages were similar across all conditions (range 83.9%

to 85.9%). These results confirm that the main effect of optoge-

netic inhibition in REWARD and ERROR conditions is increased

probability of lose–shift behavior without an effect on win–stay

behavior.

Optogenetic inhibition had no effect on how well the rats

learned the task. Analysis of discrimination percentages for each

block (Supplemental Table 2) confirmed that rats’ overall perfor-

mance was similar across all conditions. Optogenetic condition

also had no effect on motivational measures such as total time

to complete each session (F(2.27,11,38) ¼ 0.97, P . 0.05) (Fig. 5A)

and latency of reward collection after a correct lever press

(F(2.22,11.12) ¼ 0.33, P . 0.05) (Fig. 5B).

Light delivery may, in theory, alter neural activity even in

nonexpressing cells. Although this is unlikely with the light levels

used in the current experiment (Yizhar et al. 2011), to control

for the nonoptogenetic effects of the LED we tested a separate

group of rats (n ¼ 6) that received an inactive halorhodopsin

(pLenti-YFP). In these rats the three LED manipulations (ERROR,

REWARD, and ILPI) had no effect on performance (Fig. 6A,B).

This confirmed that direct physiological effects of LED illumina-

tion were unrelated to learning performance.

Figure 2. Cellular expression of halorhodopsin and electrophysiology of light-activated inhibition in
medium spiny neurons. (A) Medium spiny neurons (DARPP-32, red), halorhodopsin (YFP, green), and
their colocalization (MERGED) indicating halorhodopsin expression in medium spiny neurons (red +

green). Scale bar, 20 mm. (B) Electrophysiological recording from YFP-positive neurons in NAcc
shows the characteristic voltage response (above) of a medium spiny neuron to depolarizing and hyper-
polarizing current pulses (below). (C) Optical stimulation of YFP-positive neurons induces hyperpolar-
ization in medium spiny neurons on short and long timescales. Black bars indicate illumination time
(upper trace, 1.5 sec; lower trace, 10 sec). (D) Illumination (black bar) blocked repetitive action potential
firing induced by suprathreshold current injection.
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Experiment 2: Behavioral flexibility is increased

by optogenetic inhibition during FEEDBACK

but not DECISION periods

In Experiment 2 we made two modifications to the task in light

of results from Experiment 1. First, we delineated a decision pe-

riod so that optogenetic inhibition could be applied in a distinct

time segment. In this DECISION time segment, optogenetic inhi-

bition started with the onset of a discriminative stimulus (a tone

starting with the protrusion of the two levers), and stopped either

after 5 sec (when the tone ceased and the levers retracted) or when

the rat pressed a lever (correct or incorrect). Second, to exclude the

possibility that optogenetic inhibition in the former REWARD

and ERROR conditions might act as a discriminative stimulus

and increase the effect of reward or error outcomes, we applied

optogenetic inhibition during both errors and correct responses

(FEEDBACK) within the same session.

In Experiment 2 (n ¼ 6) we found a main effect of condition

on the total number of lever-pressing errors after reversal until

the first correct response over three reversals (F(3,15) ¼ 19.3, P,

0.001). There was a significant error reduction in those sessions

inwhich theLEDwas turnedonduring eithera correct or incorrect

response (FEEDBACKvs.OFF,P ¼ 0.015; FEEDBACKvs. RANDOM,

P ¼ 0.024; FEEDBACK vs. DECISION, P ¼ 0.027) (Fig. 4A), but not

during decisions (DECISION vs. OFF, P ¼ 0.630; DECISION vs.

RANDOM, P ¼ 0.170) (Fig. 7A). We found no significant main ef-

fect of optogenetic manipulation on the total number of lever-

pressing errors excluding errors in the period after reversal until

the first correct response (Fig. 7B). These results confirm that the

activity of NAcc cells during FEEDBACK

is important for lose–shift behavior, re-

gardless of whether feedback is of reward

or error results. These results also confirm

that inhibition during a more distinct

DECISION period has no significant ef-

fect on the measures tested.

As in Experiment 1, the learning

curve for each optogenetic condition

shows that across the 80 rewards in a ses-

sion, rats across all conditions learned

at a similar rate (with an increase in the

error rate between the 2nd and 3rd re-

versal), but a reduced number of errors

immediately after the switch in the

FEEDBACK condition (Fig. 7C). Consis-

tent with the appearance of the learn-

ing curve, there was a higher lose–shift

percentage in the FEEDBACK condi-

tion (57.8%) than in other conditions

(40.7%–44.6%). In contrast, win–stay

percentages were similar across all con-

ditions (88.1%–88.8%). Analysis of dis-

crimination percentages for each block

confirmed that overall task perfor-

mance was similar across all conditions

(Supplemental Table 3). These results

confirm that the main effect of optoge-

netic inhibition in FEEDBACK condi-

tions is increased probability of lose–

shift behavior.

Discussion

To the best of our knowledge, this is the

first demonstration that optogenetic in-

hibition of NAcc shell neurons during re-

ward or error feedback intervals increases behavioral flexibility in

a task requiring a win–stay/lose–shift strategy. We found that

optogenetic inhibition of NAcc shell activity in the time segment

between action selection and outcome reduced the number of er-

rors after a stimulus–reward contingency switch. However, opto-

genetic inhibition in other time segments had no effect on our

behavioral measures. Our results demonstrated critical time win-

dows during which NAcc shell neurons (1) integrate reward or

error feedback history and (2) use this integrated history to resist

lose–shift behavior after a contingency switch. Inhibiting NAcc

shell neurons in these critical time windows increased lose–shift

behavior, thus facilitating behavioral flexibility.

The optogenetic manipulation we used enabled us to inhibit

halorhodopsin-expressing neuronswithin range of the optic fiber.

Based on the wavelength, the fiber numerical aperture, and the

light power output from the tip of the optic fiber we estimate

that the light emanating from the tip would penetrate 0.2–0.3

mm into the tissue to inactivate a volume of 0.034–0.11 mm3.

Since the density of MSNs is 84,900mm23 (Oorschot 1996) we es-

timate that about 104 neurons caused the effects we observed. In

our intracellular recordings, the inhibitory effect of halorhodop-

sin was strong enough to block of firing in response to injected

currents that were several times larger than synaptic currents.

No rebound spiking was observed in the MSNs, consistent with

previous studies (Wickens and Wilson 1998; Lansink 2008).

Thus, the main effect of the optogenetic manipulation was re-

duced firing of the MSN output neurons of the NAcc shell.

In addition to the MSNs, the NAcc has a small popula-

tion of fast-spiking interneurons (Kawaguchi et al. 1995). These

Figure 3. Schematic representation of optogenetic conditions. (A) Experiment 1. REWARD: LED on
after a correct lever press and off when the reward was collected. ERROR: LED on after an incorrect
lever press and off after 1.5 sec. ILPI: LED on throughout but after a correct level press was turned off
until reward collection and after an incorrect lever press was turned off for 1.5 sec. (B) Experiment
2. FEEDBACK: LED on for either REWARD or ERROR conditions as in Experiment 1. DECISION: LED
on during tone and lever-out period until a correct or incorrect lever press.
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interneurons are relatively few in number (,1% of the total neu-

rons) but they have strong inhibitory effects on MSNs (Koos and

Tepper 1999; Koos et al. 2004). The promoter we used, synapsin,

may have resulted in expression of halorhodopsin in fast spiking

interneurons as well as in MSNs, raising the possibility of a disin-

hibitory action onMSNs. However, our intracellular records show

this is unlikely because the inhibitory effect of halorhodopsin

inMSNs is greater than the inhibitory currents caused by fast-spik-

ing interneurons (Koos et al. 2004; Tepper et al. 2004). Moreover,

although these low-threshold spiking interneurons do exhibit

rebound low-threshold calcium bursts after release from hyper-

polarization (Kubota and Kawaguchi 2000), such bursts would in-

crease the inhibitory effect of halorhodopsin onMSNs rather than

diminish it. Therefore, inhibition of MSN output is the dominant

effect of the optogenetic manipulation.

Our main finding is that the optogenetic inhibition of MSNs

in the NAcc shell causes improved switching performance when

inhibition is applied in either of two time windows: after correct

responses (REWARD), or after errors (ERROR). We suggest that

these effects are most probably mediated by the same neurons—

those that express halorhodopsin—involved in a mechanism

that first integrates feedback during learning and is later engaged

after a shift in contingencies.We discuss this putativemechanism

below.

In the REWARD condition, NAcc shell neurons were inhibit-

ed only after correct responses. The effect of inhibition in the

REWARD condition—seen after the reversal—was evident in the

smaller number of errors before the first correct response. How-

ever, the rats in the REWARD condition receive no optogenetic

inhibition during the unrewarded responding on the incorrect

lever immediately after the contingency switch, because they

are making incorrect responses. This means that the cause of

the improvement must have occurred during the initial learning,

before the reversal, when the rat is making correct responses.

However, there is no evidence in our data of fewer correct re-

sponses in the periods before the reversal, where the learning

curves are similar for all conditions.

To explain the effect of optogenetic inhibition in the

REWARDcondition,wepostulateweaker learningof rewardexpec-

tancy prior to the switch in contingencies, caused by inhibition of

NAcc shell neurons after a correct response. The discharge rate of

ventral striatal neurons has been reported to correlatewith reward

magnitude and expectancies and encode cues related to reward

(Cromwell and Schultz 2003; Roitman et al. 2005; Wood et al.

2011).Optogenetic inhibitionof suchneuronsduring learningex-

periences would reduce activity that is necessary for synaptic plas-

ticity (Reynolds and Wickens 2000, 2002; Reynolds et al. 2001),

leading to weaker reward expectation signals. Weaker reward ex-

pectation signals in turn may cause a reduced tendency to resist

lose–shift behavior, resulting in more labile responding after a

contingency switch.

The effect of optogenetic inhibition in the ERROR condition

requires a different explanation. Optogenetic inhibition when an

incorrect response wasmade after a shift in contingency was suffi-

cient to reduce the number of reversal errors. Themechanismme-

diating this effect presumably involves the same neurons as in the

REWARD condition but at a different time point. In the ERROR

condition, inhibition of these same neurons representing reward

expectancy in the REWARD condition would also cause a weaker

reward expectation signal in the ERROR condition. Theweaker re-

wardexpectancyactivitymight result inmore labile respondingaf-

ter a contingency shift.

We considered but rejected an alternative interpretation that

the increase in behavioral flexibility in REWARD and ERROR is

caused by LED-induced neural inhibition acting as cue to increase

the effect of feedback. Such a cuemight have been informative if it

only occurred in association with errors in the ERROR condition,

or in association with rewards in the REWARD condition. To test

this possibility we added FEEDBACK condition in Experiment 2,

in which optogenetic inhibition was given during both REWARD

and ERROR conditions. This ensured that the optogenetic inhibi-

tion provided no additional information about the outcome. We

found that the FEEDBACK condition also increased lose–shift be-

havior resulting in fewer errors after a switch, thus failing to sup-

port the alternative interpretation.

Considering our results in the framework of behavioral flexi-

bility, decision-making, and reinforcement learning, it is plausible

to suggest thatnormally the tendency to shift after a loss is reduced

by an expectancyof reward. Even in the absence of a reward on the

most recent trial, the integrated history of previous association of

the lever press with reward may sustain responding. This would

cause continued incorrect responding after errors brought about

Figure 4. Reversal errors are reduced by optogenetic inhibition during
REWARD or ERROR epochs. (A) Mean total number of lever-pressing errors
after reversal until first correct response summed over three reversals.
There is a significant decrease in these errors in the ERROR and REWARD
conditions. (B) Mean total number of lever-pressing errors excluding
those shown in A. There is no difference between the conditions. (C)
Learning curve showing cumulative errors over rewards acquired (80
rewards per session) for the three optogenetic conditions (ERROR,
REWARD, ILPI) and two control conditions (OFF, RANDOM), confirming
that the main effect is in the errors after reversal and before the first
correct response.

Figure 5. Optogenetic stimulation has no effect on motivational vari-
ables. (A) There is no significant effect of condition on latency from
correct lever press to reward collection. (B) There is no significant effect
of condition on time to complete the task.
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by a switch in contingencies. Inhibiting such an expectancy of re-

ward signal—as in our experiments—would lead to more rapid

switching to the correct response. Such a framework combines

rule-based win–stay, lose–shift models (Worthy et al. 2012) with

reinforcement learning models (Sutton and Barto 1981; Barto

and Sutton 1982) by basing decisions on the recency-weighted av-

erage reward, leading to selection of the option with greatest ex-

pected reward values (Worthy et al. 2013). Optimal behavior in

such contingency switch tasks is possible using a win–stay, lose–

shift strategy that repeats the response from the last trial if it was

correct but switches to the alternative response if it was incorrect

(Rayburn-Reeves et al. 2013). Such a strategy requires integration

of the results of previous responses into subsequent responses.

Our results may be explained in this framework if REWARD,

ERROR, and FEEDBACK conditions result in weaker reward expec-

tancy signals.

The present findings contribute to a larger body of work in

whichprolonged inactivation or lesions of theNAcc shell improve

behavioral flexibility in various forms, including latent inhibi-

tion, Pavlovian-instrumental transfer, and attentional set-shifting

(Weiner et al. 1996; Corbit et al. 2001; Pothuizen et al. 2005a;

Floresco et al. 2006). For example, Floresco et al. (2006) found

that NAcc shell inhibition during the first day of discrimination

learning led to improved performance (fewer trials to reach crite-

rion) relative to controls receiving inhibition after a set switch.

The improvement in shifting from the previously learned strategy

was interpreted as inhibition-induced inability of the rats to fully

ignore the irrelevant stimulus during the first discrimination,

making this stimulus more salient during the shift, and thus

reducing perseverative errors. However, Ambroggi et al. (2011)

found that NAcc shell inactivation did not impair the ability to

discriminate between cues, even though it reduced inhibition of

responding to a nonrewarded stimulus. Our findings are consis-

tent with Ambroggi et al. (2011) but not with Floresco et al.

(2006), because we did not see increased lose–shift behavior in

the ILPI or DECISION conditions. However, the firing of a subset

of NAcc neurons in the delay period preceding movement is cor-

related with the direction of subsequent movement (Taha et al.

2007) leaving open the possibility that theymay contribute to de-

cisions if inactivation over both response directions leaves some

differential activation.

Some effects of optogenetic inhibition of the NAcc shell

may be mediated by dopamine neurons in the ventral tegmental

area that receive inputs from the NAcc (Zahm and Heimer 1990;

Heimer et al. 1991; Usuda et al. 1998; Aggarwal et al. 2012). Al-

terations in dopamine signaling have previously been associated

with changes in behavioral flexibility. For example, Colpaert

et al. (2007) found that systemic dopamine D2 antagonists in-

creased win–shift behavior after a rewarded trial. Conversely,

Halluk and Floresco (2009) found that infusions of the D2 agonist

quinpirole directly into the NAcc impaired reversal learning

without disrupting initial response learning. St Onge et al. (2011)

found that rats would bias their choices toward a lose–shift strat-

egy better than controls if a D1 agonist was injected into the pre-

frontal cortex. Together, these studies suggest that some of the

effects of NAcc shell inhibitionmay bemediated by dopaminergic

projections to the prefrontal cortex or NAcc (Floresco et al. 2009).

In conclusion, our optogenetic experiments indicate critical

time segments during which NAcc shell neurons integrate reward

or error feedback history, and use this integrated history to make

decisions. InhibitingNAcc shell neurons in these critical time seg-

ments increased lose–shift behavior, thus facilitating behavioral

flexibility. The effects we observed may be explained by reduced

integration of reinforcement history causing reduced reward ex-

pectancy, or disrupted readout of reward expectancy for decision

making. Weaker reward expectancy signals might explain the ob-

served more labile responding after a contingency shift. Further

work is needed to examine the natural firing patters of the in-

fected neurons in these critical timewindows, which our evidence

suggests play a key role in integrating knowledge of results into

subsequent behavior, and in modulating lose–shift behavior

when contingencies change.

Materials and Methods

Subjects
Twenty Long Evans rats were obtained from Charles River weigh-
ing 250–275 g on arrival. The animals were initially housed in
pairs and later housed individually after they had cannulae im-
planted. They were maintained on a 12-h light–dark cycle. Rats
were restricted to 15 g of chow per day with free access to water.

Figure 7. Reversal errors are reduced by optogenetic inhibition during
FEEDBACK. (A) Mean total number of lever-pressing errors after reversal
until first correct response summed over three reversals. There is a signifi-
cant decrease in these errors in the FEEDBACK condition but not in the
DECISION, RANDOM, or OFF conditions. (B) Mean total number of lever-
pressing errors excluding those shown in A. There is no difference
between the conditions. (C) Learning curve showing cumulative errors
over rewards acquired (80 rewards per session) for the two optogenetic
conditions (FEEDBACK, DECISION) and the control conditions (OFF,
RANDOM), confirming that the main effect occurs in the period
between contingency switch and the first correct response.

Figure 6. Optical stimulation has no effect on control rats with inactive
halorhodopsin. (A) Total number of lever-pressing errors after reversal
until first correct response summed over three reversals. There is no
effect of condition. (B) Total number of lever-pressing errors excluding
errors in the period after reversal until first correct response. There is no
effect of condition.
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The Okinawa Institute of Science and Technology Animal Care
and Use Committee approved the procedures.

Virus production and purification
The pLenti-hSyn-eNpHR3.0-EYFP lentiviral vector was kindly
provided by Karl Deisseroth’s Lab. This contains a fusion protein
of halorhodopsin (eNpHR) and the hSyn promoter which is
highly specific for neurons (Kugler et al. 2003). This was used
along with packaging plasmid, psPAX2, and envelope plasmid,
pMD.2G, in a liposome mediated triple transfection (FuGene-6,
Roche) of HEK293T cells (ATCC). After a period of 6 h, the medi-
um was replaced with an Ultraculture serum free medium (Lonza
Bio) supplementedwith 5-mM sodiumbutyrate and viral particles
shed from the cells were collected over a period of 36 h. The virus
containingmediawas then filtered through a 0.45-mmSFCA filter
unit (Nalgene) and spun in a CP100WX refrigerated (4˚C) ultra-
centrifuge for 2 h at 16K rpm (Hitachi). Supernatantswere discard-
ed and the viral pellets re-suspended in PBS and frozen at 280˚C
for subsequent use. Final concentrated viral titers were 1.78 ×

1011 copies/mL and determined by RT-PCR using the Lenti-X
qRT-PCR Titration Kit (Clontech).

Stereotaxic optic fiber implantation and virus injection
We injected pLenti-eNpHR3.0-YFP bilaterally at stereotaxic coor-
dinates for the NAcc shell and implanted optical fibers at the
site of each injection on both sides. For these procedures, rats
were anesthetized with amixture of isoflurane and oxygen at a ra-
tio of 5:1 (induction) and placed in a stereotaxic frame (David
Kopf Instruments). The isoflurane to oxygen ratio was changed
to 2:1 during the surgical procedure. Two holes were drilled and
1.0 mL virus was injected via Hamilton syringe into the NAcc shell
bilaterally at the following coordinates from bregma: anterior–
posterior, +1.6 mm; dorsoventral, 27.0 mm; medial–lateral,
+/2 0.8 mm. After the injections, the two fiber-optic cannulae
were inserted and anchored to the skull with stainless-steel screws
and dental cement. For maximum viral expression, the animals
were rested for 2 wk before behavioral training began.

Behavioral procedures and optogenetic conditions
Ratswere trained and tested in sound-attenuated testing chambers
(34 × 29 × 25 cm, Med Associates) and the behavioral task was
programmed using a MED-PC system. Retractable levers were fit-
ted on the left and right walls of the chamber, with a pellet recep-
tacle in the center. A head entry detector was used to measure
reward collection. A house light was located in the top center of
the response panel and a Sonalert attachmentwasmounted above
the cage. Food pellets (45mg) were delivered via a pellet dispenser
(ENV-203M). Light delivery into the rat’s fiber-optic cannulae was
gated by a digital logic control signal between theMED-PC system
and an LED driver. The LED (wavelength 590 nm) was connected
via a two-channel fiber-optic swivel that allowed the animal to
turn freely. Two mono fiber patch cords provided optical connec-
tion from the swivel to the fiber-optic cannulae. All optical equip-
ment was obtained from Doric Lenses. The optical fiber diameter
was 200 mm with a numerical aperture of 0.37. Power output
from the tip of the fiber was 0.40 mW.

Experiment 1

Webegan training 2wk after pLenti-eNpHR3.0-YFP injection, and
tested from 4- to 8-wk post-injection. Training took place in four
stages. In the first stage—fixed-ratio (FR1) discrimination—rats
learned to press the left or right lever (counterbalanced) for a
food reward. Each correct lever press resulted in the simultaneous
illuminationof a visual cue, the onset of an auditory stimulus, and
the delivery of a 45-mg food pellet. Rats had 90 min to complete
the task and could receive 80 rewards. The criterion for moving
to the next stage of training was 90% discrimination accuracy.
In the second stage—between-session reversal—the stimulus–
reward contingencies were reversed so that if lever-pressing on
the left previously resulted in reward delivery this ceased to be

the case and lever-pressing on the right became rewarding, and
vice versa. Rats underwent 3 d of training before moving on to
the third stage. In the third stage—within session reversal—the
stimulus–reward contingencies were switched twice within the
same session, so that after 40 lever presses on the left to receive
food pellets, rats had to lever press on the right to receive the re-
maining 40 pellets.

In the final stage, four different stimulus–reward contingen-
cies were tested in each session. Rats obtained 20 rewards on a
lever before a switch occurred, with the switching sequence coun-
terbalanced, accumulating a total of 80 rewards per session. The
rat could choose to lever press at any time within a session.
After 3 d of training on this paradigm, twomono fiber patch cords
from the LEDwere connected to the implanted fiber-optic cannu-
lae and the effects of optogenetic inhibition at different time
points were tested. We conducted a total of 27 testing sessions
of 90 min on different days.

To investigate the role of neural activity in the NAcc shell in
different time segments, each rat was subjected to optogenetic in-
hibition during days 10–36. Optogenetic conditions were defined
by the timing of the LED illumination, as shown in Figure 3A.

Experiment 2

All training and testing procedures were identical to those in
Experiment 1 in terms of stimulus–reward contingencies, but
optogenetic conditionswere changed to those shown in Figure 3B.

Histology
Expression of pLenti-eNpHR3.0-YFP and location of the optical
fiber tips in the NAcc shell were confirmed by histology in all an-
imals at the endof the experiments (Fig. 1). Following optogenetic
behavioral experiments, all animals were sacrificed by injection of
pentobarbital and perfused transcardially with PBS/heparin (60
U/mL) followed by 4% PFA. The brains were removed and post-
fixed on 4% PFA overnight. The following day the PFA was
discarded and the brains were immersed in a 20% sucrose solu-
tion in PBS overnight. Brain slices were cut into 60-mm thick sec-
tions on a freezing microtome (Yamato), placed in PBS for storage
at 4˚C.

Immunocytochemistry
To determine the efficiency of expression of eNpHR3.0-YFP in
NAcc medium spiny cells, slices were permeabilized/quenched
with 0.05 M NH4Cl and 0.02% (w/v) Saponin in PBS or 15 min
and blocked with PGAS containing 2% Goat Serum (Jackson)
and 1% (w/v) BSA for 1 h. For double staining of eNpHR and
DARPP-32, brain sections were stained using chicken-derived
GFP (1:2000, Abcam) and rabbit-derived DARPP-32 antibodies
(1:1000, Chemicon) overnight at 4˚C. The following day and after
PGAS washes to remove the primary antibodies, secondary label-
ing of the bound antibodies on the slices were stained using goat-
derived anti-chicken Alexa 488 and anti-rabbit Alexa 594 conju-
gated secondary antibodies (both at 1:500, Invitrogen) for 4 h at
25˚C. After washing the secondary antibodies with PGAS and
PBS, slices were mounted onto slides with Vecta-Shield (Vector
Labs) and images were acquired using a Zeiss LSM 510 Meta
Confocal microscope. We quantified the infection efficacy by
counting the number of YFP positive cells that were also
DARPP-32 (double labeled). The analysis was applied to each
NAcc shell section (N ¼ 4) in which YFP was present within a
counting frame (200 mm × 200 mx × 50mm). The total number
of double labeled cells (YFP+DARPP-32) was compared with the
total number of YFP positive cells.

Electrophysiology
Electrophysiological studies were performed 2 wk after bilateral
injection of pLenti-eNpHR3.0-YFP at 5 wk, corresponding to the
time at which training began in behaviorally tested rats. To pre-
pare brain slices for electrophysiology, coronal sections (300 mm
thick) containing the NAcc were cut on a VT1000S microtome
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(Leica) in cold modified artificial CSF (ACFS) containing 50 mM
NaCl, 2.5 mM KCl, 7 mM MgCl2, 0.5 mM CaCl2, 1.25 mM
NaH2PO4, 25 mM NaHCO3, 95 mM sucrose, 25 mM glucose and
saturated with 95%O2/5%CO2. Slices were then incubated in ox-
ygenated standard ACSF containing 120mMNaCl, 2.5mMKCl, 2
mM CaCl2, 1 mMMgCl2, 25 mMNaHCO3, 1.25 mMNaHPO4, 15
mM glucose. After recovery for 1–4 h, slices were transferred to a
recording chamber where they were perfused with standard ACSF
(3–4 mL/min, 30˚C).

Prior to recording, eNpHR-expressing neurons were identi-
fied by YFP fluorescence. We used patch pipettes (2–4 MV) filled
with internal solution (115 mM K gluconate, 1.2 mM MgCl2, 10
mM HEPES, 4 mM ATP, 0.3 mM GTP, 0.5% biocytin, pH 7.2–
7.4) to make whole-cell current-clamp recordings from eNpHR-
YFP-positive neurons in NAcc. Neural electrical responses were
amplified using aMulticlamp 700B amplifier and signals were dig-
itized at 10 kHz. Stimulation of NpHR was achieved by epifluores-
cence illumination (100-W xenon arc lamp, 560-nm excitation
filter; Semrock FF01-562/40) gated by a Uniblitz VS25 Shutter un-
der through-the-lens control.

Statistical analyses
For statistical analyses we used SPSS version 18 (SPSS Inc). Data
were analyzed using one-way repeated measures analysis of vari-
ance (ANOVA). During testing, we calculated the total number
of errors either during the reversal phase (total number of lever-
pressing errors after reversal until first correct response over three
reversals) or before the reversal (total number of lever-pressing er-
rors excluding errors in the period after reversal until first correct
response) for all the optogenetic manipulations over three ses-
sions (three sessions for each LED condition). If a main effect
was found, we conducted post-hoc pairwise comparisons using
the Bonferroni correction for the repeated measures ANOVA. A P
value of ,0.05 was considered significant.
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