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Reinforcement learning occurs when

organisms adapt behavior on the basis

of associations with reward and punish-

ment.Reinforcement learning is a useful

algorithm because it is unsupervised,

relying on trial-and-error learning under

conditions in which the optimal solution

is unknown. Recent neural network mod-

els of reinforcement learning are based on

the neurophysiology of the rat, monkey,

and human dopamine systems (Montague

et al., 1996; Dayan and Balleine, 2002;

Schultz, 2002; Montague et al., 2004;

Pan et al., 2008). The main finding of

this research is that the dopamine system

appears to minimize errors in the predic-

tion of reward through a process called

temporal difference learning. As predicted

by the temporal difference learning mod-

els, dopamine neurons respond during the

early stages of classical and operant con-

ditioning with a burst of action potentials

(a phasic-like response) after reward pre-

sentation (Schultz, 1998; O’Doherty et al.,

2006). However, after repeated pairings of

a given stimulus and reinforcement, the

dopamine neurons respond to the onset

of the stimulus, be it a conditioned stim-

ulus or a cue that triggers a stereotyped

action that results in reward (Mirenowicz

and Schultz, 1994). After an association

has been formed between the stimulus and

reinforcement, dopamine ceases respond-

ing to the reinforcer itself (Schultz et al.,

1997).

Based on these neurophysiological

data, reinforcement learning models have

proposed that the role of the midbrain

phasic DA neurons is to act as a teach-

ing signal which adjusts reward prediction

errors and broadcasts such information

to upstream cell populations involved

in reward learning such as the nucleus

accumbens (NAc) (Joel et al., 2002;

Wassum et al., 2013). More recently, a

number of computational studies have

added another layer of complexity to their

models by incorporating the idea of incen-

tive motivation as a way to better capture

the role of dopamine in reward learning

(McClure et al., 2003; Niv, 2007; Zhang

et al., 2009; Morita et al., 2013).This has

largely been based on findings from lesion

and pharmacological studies whereby it

has been hypothesized that dopamine

neurons respond to conditioned stimuli by

invigorating instrumental actions that lead

to the obtainment of rewards (Berridge

et al., 2009; Wassum et al., 2011).

In the meantime, a number of authors

have suggested that because midbrain

dopamine neurons also respond to aver-

sive and salient stimuli by phasic DA acti-

vations (Matsumoto and Hikosaka, 2009;

Cohen et al., 2012; Ilango et al., 2012;

Tan et al., 2012; Brooks and Berns, 2013;

Fiorillo et al., 2013), that their role in

encoding reward prediction errors may be

more limited than first envisaged (Horvitz

et al., 1997; Redgrave and Gurney, 2006;

Redgrave et al., 2008; May et al., 2009;

Thirkettle et al., 2013). The scope of this

Opinion article, however, is not to assess

the validity of such claims.

On the contrary, the aim of this arti-

cle is to focus on one area of research

that has received relatively little atten-

tion, namely, how the phasic DA signal

may be causally related to action selec-

tion, goal-directed behavior, and behav-

ioral flexibility. This is partially because

the vast majority of studies which have

explored whether DA neurons may encode

more than reward prediction errors (e.g.,

including measures related to behavioral

flexibility such as reward value, reward

probability, choice behavior, discounting

of delayed rewards) (Fiorillo et al., 2003,

2008; Morris et al., 2006; Roesch et al.,

2007; Takahashi et al., 2009; Bromberg-

Martin et al., 2010a,b; Nomoto et al.,

2010), have been based upon electro-

physiological data, which by their very

nature can only support a correlation

between neuronal activation and inhibi-

tion with behavior but cannot establish

causation. This has been acknowledged

by a statement from Wolfram Schultz

who declared that “although the predic-

tion error response of dopamine neurons

would make a good teaching signal, the

bulk of the available data are correlational”

(Schultz, 2010). Therefore, to establish

causation we will look at a number of

recent studies that have used primarily,

optogenetic, voltammetry and pharmaco-

logical interventions and that may provide

an answer to this question.

With the recent introduction of

optogenetics, for example, it has been

possible to perturb neural activity at mil-

lisecond timescales and directly relate this

manipulation to an array of behaviors

including sleep, anxiety, depression, and

fear, to name but a few (Rolls et al., 2011;

Kim et al., 2013; Tye et al., 2013; Courtin

et al., 2014). More specifically, midbrain

DA neurons and their striatal projec-

tions have also been selectively targeted

resulting in behavioral modifications of

food intake, cocaine consumption, condi-

tioned place preference and aversion (by

inhibition of DA activity via GABAergic

VTA cells) (Tsai et al., 2009; Lobo et al.,

2010; Domingos et al., 2011; Tan et al.,

2012).
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Optogenetic targeting of midbrain DA

cells and their striatal projections, has also

revealed interesting observations regard-

ing their causal role in reward prediction,

and possibly, behavioral flexibility. With

regards to the causal role of DA in reward

prediction (Kim et al., 2012), the authors

showed that phasic activation of VTA DA

neurons after a nose poke could drive

operant responses in the absence of food

reward. In another laboratory, a blocking

procedure was used to demonstrate that

activation of DA neurons at the time of

reward delivery during compound stimu-

lus presentation could artificially produce

a conditioned response to the normally

blocked cue. In other words, phasic DA

stimulation at a point in time (reward

delivery) when this would normally be

absent could unblock learning (Steinberg

et al., 2013).

In a separate study looking at manip-

ulation of the GABAergic cells of the

VTA on reward learning and its effect

on DA release, optogenetic stimulation of

VTA GABAergic neurons disrupted con-

summatory behavior but not if the VTA

GABA projections to the NAc were tar-

geted. Moreover, stimulation of the GABA

neurons suppressed VTA DA firing and

release in the NAc (Van Zessen et al.,

2012). In a further study to characterize

the VTA GABA projections to the NAc,

it was found that activation of this path-

way selectively inhibited cholinergic neu-

rons of the NAc which in turn increased

associative learning of an aversive predic-

tive cue (Brown et al., 2012). Importantly,

this effect was dopamine independent, as

stimulation of GABA terminals in the NAc

did not change baseline firing of VTA DA

cells. Taken together, these studies confirm

that within the VTA, DA activity regulates

aspects related to appetitive reward learn-

ing. Moreover, these data highlight how

the encoding of an aversive outcome may

not only be signaled by DA cells project-

ing to the NAc but also by activation of

cholinergic cells in the NAc that receive

preferential input from VTA GABA neu-

rons, extending the results from previous

investigations (Tan et al., 2012).

With regards to the causal role of DA

in behavioral flexibility, in a recent study

(Adamantidis et al., 2011), the authors

targeted the dopaminergic neurons of

the VTA by injecting channelrhodopsin-2

(ChR2) in Th-Cre mice. The initial behav-

ioral paradigm required mice to bar press

one of two levers. The “active” lever

resulted in food delivery plus optogenetic

stimulation whereas bar pressing on the

“inactive” lever resulted in the delivery

of food only. Compared to controls (YFP

mice), phasic DA stimulation enhanced

the effects of food-reward seeking (i.e.,

mice bar pressed the active lever preferen-

tially over the inactive). Interestingly, they

also found that after a series of extinc-

tion sessions during which no food reward

or phasic DA stimulation occurred, pref-

erential lever pressing (to the initial active

lever) could be reestablished by DA stim-

ulation in the absence of both external

cues and, critically, food reward. Finally,

the authors used a reversal learning session

where the relationship between the active

(optical stimulation + no food reward)

and inactive (no optical stimulation + no

food reward) levers were switched, and

demonstrated that ChR2 mice switched

their lever pressing to the previously inac-

tive lever compared to control mice. This

finding is particularly important because

it suggests that not only is the phasic

DA signal driving and enhancing sim-

ple stimulus-reward associations but it is

also causally involved in flexible behav-

ioral adaptations that occur as a result of

changes in stimulus-reward contingencies.

Behavioral flexibility has also been

tested by optogenetic manipulations of

dopamine receiving NAc neurons. In a

recent study, dopamine D1 and D2 recep-

tors were selectively targeted while D1-cre

and D2–cre mice were performing a prob-

abilistic switching task (Tai et al., 2012).

The results showed that activation of D1

and D2 neurons was effective at increas-

ing lose-shift behavior (i.e., moving from

an incorrect to a correct response) com-

pared to controls but had no effect on

win-stay performance (i.e., repeating the

previously rewarded response). Moreover,

the effect was dependent on whether stim-

ulation occurred before movement initia-

tion but not if it was delayed by 150 ms.

Interestingly, we recently found (Aquili

et al., 2014) that non-specific optogenetic

inhibition and not excitation of NAc shell

neurons increased lose-shift behavior but

only if the inhibition occurred during

feedback of results (between lever press-

ing and rewards or non-rewards) but not

during action selection (preceding a lever

press). We speculated that inhibition of

NAc cells during specific time segments

may have weakened reward expectancy

signals which would in turn facilitate

switching to a correct response after an

error.

Differential effects between NAc core

and shell on learning have been observed

using fast-scan cyclic voltammetry which

may explain the contradictory findings

from the two previous optogenetic stud-

ies. In fact, in one study cue-evoked

dopamine release was larger and longer

lasting in the NAc shell than in the core

during goal-directed behavior for sucrose

(Cacciapaglia et al., 2012). In two related

studies, it was also found that concen-

trations of cue-evoked DA release closely

tracked differences in reward magnitude

in the NAc shell (Beyene et al., 2010) and

reward delays in both NAc core and shell

(Wanat et al., 2010). DA reward predic-

tion error signals in the NAc core have also

been reported using voltammetry (Hart

et al., 2014). Here, using a probabilistic

decision-making task, the authors found

that dopamine concentrations varied sys-

tematically as differing degrees of reward

uncertainty were introduced, in a man-

ner closely resembling the predictions of

reinforcement learning models and elec-

trophysiological data of VTA DA neurons.

Similarly, the observation that the DA pha-

sic response to rewards gradually shifts

to the earliest predictor of reinforcement

over the course of learning as predicted

by temporal difference models (Sutton and

Barto, 1981) and validated by DA elec-

trophysiological recordings, has been con-

firmed by voltammetric data (Sunsay and

Rebec, 2008). These findings are impor-

tant because changes in firing rates may

not always reflect changes in DA release

(Youngren et al., 1993), and these voltam-

metric data allow us to better establish the

causal role of DA in reward learning.

Data from pharmacological manipula-

tion of (mostly) dopamine D1 and D2

function in the striatum is another impor-

tant component to take into account

when trying to establish a causal link

between neural activity and behavior.

Dopamine depletion, for example, in the

dorsomedial striatum results in rever-

sal learning impairments (O’Neill and

Brown, 2007). Moreover, in stimulant
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dependent individuals who display per-

severative behaviors following an incor-

rect response during a reversal learning

task, administration of a dopamine D2/3

antagonist reduced perseverative errors

and improved caudate nucleus function

(Ersche et al., 2011), and in separate

study, administration of a D2 antago-

nist enhanced reward related prediction

error signals in the striatum (Jocham

et al., 2011). Conversely, stimulation of D2

(but not D1) receptors using the agonist

quinpirole impaired goal-directed behav-

ior and decision making (St Onge et al.,

2011; Naneix et al., 2013) and broad inac-

tivation of caudate nucleus cells disrupted

the ability for flexible responses based

on previous reward history (Muranishi

et al., 2011). Interestingly, in monkeys, D2

receptor availability in the dorsal striatum

was correlated with the number of rever-

sal learning errors (Groman et al., 2011).

Overall, these data suggest that abnormal

increases/decreases in striatum DA activ-

ity via D1/D2 receptors causally influence

several important measures of behavioral

flexibility.

Studies that have looked at increasing

dopamine concentration have demon-

strated that DA stimulation by injec-

tion of amphetamine in the NAc core

or shell increased instrumental respond-

ing to a conditioned stimulus predictive of

reward (Pecina and Berridge, 2013), and

administration of the dopamine precursor

L-DOPA in older adults restored reward

prediction error signaling (Chowdhury

et al., 2013).

In conclusion, increasing evidence from

optogenetic, voltammetry, and pharmaco-

logical studies over the recent years have

added a new dimension to the established

but mostly correlation role between the

midbrain DA neurons and reward learn-

ing. This evidence suggests that this pha-

sic response may have a causal role not

only in reward prediction error signal-

ing, but also in driving flexible behavioral

adaptations to changes in stimulus-reward

contingencies.
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