8 research outputs found

    Prioritizing Preferable Locations for Increasing Urban Tree Canopy in New York City

    Get PDF
    This paper presents a set of Geographic Information System (GIS) methods for identifying and prioritizing tree planting sites in urban environments. It uses an analytical approach created by a University of Vermont service-learning class called “GIS Analysis of New York City\u27s Ecology” that was designed to provide research support to the MillionTreesNYC tree planting campaign. These methods prioritize tree planting sites based on need (whether or not trees can help address specific issues in the community) and suitability (biophysical constraints and planting partners’ existing programmatic goals). Criteria for suitability and need were based on input from three New York City tree-planting organizations. Customized spatial analysis tools and maps were created to show where each organization may contribute to increasing urban tree canopy (UTC) while also achieving their own programmatic goals. These methods and associated custom tools can help decision-makers optimize urban forestry investments with respect to biophysical and socioeconomic outcomes in a clear and accountable manner. Additionally, the framework described here may be used in other cities, can track spatial characteristics of urban ecosystems over time, and may enable further tool development for collaborative decision-making in urban natural resource management

    Biological, Social, and Urban Design Factors Affecting Young Street Tree Mortality in New York City

    Get PDF
    In dense metropolitan areas, there are many factors including traffic congestion, building development and social organizations that may impact the health of street trees. The focus of this study is to better understand how social, biological and urban design factors affect the mortality rates of newly planted street trees. Prior analyses of street trees planted by the New York City Department of Parks & Recreation between 1999 and 2003 (n=45,094) found 91.3% of those trees were alive after two years and 8.7% were either standing dead or missing completely. Using a site assessment tool, a randomly selected sample of 13,405 of these trees was surveyed throughout the City of New York during the summers of 2006 and 2007. Overall, 74.3% of the sample trees were alive when surveyed and the remainder were either standing dead or missing. Results of our initial analyses reveal that highest mortality rates occur within the first few years after planting, and that land use has a significant effect on street tree mortality. Trees planted in one- and two-family residential areas had the highest survival rates (82.7%), while young street trees planted in industrial areas, open space and vacant land had the lowest rates of street tree survival (60.3% -62.9%). Also significant in predicting street tree success and failure are species type, tree pit enhancements, direct tree care/stewardship, and local traffic conditions. These results are intended to inform urban forest managers in making decisions about the best conditions for planting new street trees

    Assessing the Effects of the Urban Forest Restoration Effort of MillionTreesNYC on the Structure and Functioning of New York City Ecosystems

    Get PDF
    Current forest restoration practices for New York City’s (NYC) MillionTreesNYC Initiative on public parkland include site preparation with extensive invasive species removal and tree and shrub planting with the goal of creating new multi-layered forests. We have launched a long-term investigation of these sites in order to understand the primary physical, chemical, and biological responses of urban ecosystems to MillionTreesNYC forest restoration practices. This research will examine high and low diversity tree and understory planting combinations in permanent experimental forest restoration plots across NYC. The study assesses how the interactions between soil heterogeneity, plant population dynamics, and forest restoration management strategies drive urban forest ecosystem structure and functioning. Working in collaboration with the NYC Department of Parks & Recreation (NYC Parks) and the MillionTreesNYC tree planting campaign, we are examining different restoration strategies to assess how restoration practices affect the ecological development trajectories of newly established forests in NYC

    Prioritizing Preferable Locations for Increasing Urban Tree Canopy in New York City

    No full text
    This paper presents a set of Geographic Information System (GIS) methods for identifying and prioritizing tree planting sites in urban environments. It uses an analytical approach created by a University of Vermont service-learning class called “GIS Analysis of New York City's Ecology” that was designed to provide research support to the MillionTreesNYC tree planting campaign. These methods prioritize tree planting sites based on need (whether or not trees can help address specific issues in the community) and suitability (biophysical constraints and planting partners’ existing programmatic goals). Criteria for suitability and need were based on input from three New York City tree-planting organizations. Customized spatial analysis tools and maps were created to show where each organization may contribute to increasing urban tree canopy (UTC) while also achieving their own programmatic goals. These methods and associated custom tools can help decision-makers optimize urban forestry investments with respect to biophysical and socioeconomic outcomes in a clear and accountable manner. Additionally, the framework described here may be used in other cities, can track spatial characteristics of urban ecosystems over time, and may enable further tool development for collaborative decision-making in urban natural resource management

    Urban Tree Canopy and Asthma, Wheeze, Rhinitis, and Allergic Sensitization to Tree Pollen in a New York City Birth Cohort

    Get PDF
    Background: Urban landscape elements, particularly trees, have the potential to affect airflow, air quality, and production of aeroallergens. Several large-scale urban tree planting projects have sought to promote respiratory health, yet evidence linking tree cover to human health is limited. Objectives: We sought to investigate the association of tree canopy cover with subsequent development of childhood asthma, wheeze, rhinitis, and allergic sensitization. Methods: Birth cohort study data were linked to detailed geographic information systems data characterizing 2001 tree canopy coverage based on LiDAR (light detection and ranging) and multispectral imagery within 0.25 km of the prenatal address. A total of 549 Dominican or African-American children born in 1998–2006 had outcome data assessed by validated questionnaire or based on IgE antibody response to specific allergens, including a tree pollen mix. Results: Tree canopy coverage did not significantly predict outcomes at 5 years of age, but was positively associated with asthma and allergic sensitization at 7 years. Adjusted risk ratios (RRs) per standard deviation of tree canopy coverage were 1.17 for asthma (95% CI: 1.02, 1.33), 1.20 for any specific allergic sensitization (95% CI: 1.05, 1.37), and 1.43 for tree pollen allergic sensitization (95% CI: 1.19, 1.72). Conclusions: Results did not support the hypothesized protective association of urban tree canopy coverage with asthma or allergy-related outcomes. Tree canopy cover near the prenatal address was associated with higher prevalence of allergic sensitization to tree pollen. Information was not available on sensitization to specific tree species or individual pollen exposures, and results may not be generalizable to other populations or geographic areas

    GWAS and colocalization analyses implicate carotid intima-media thickness and carotid plaque loci in cardiovascular outcomes.

    Get PDF
    Carotid artery intima media thickness (cIMT) and carotid plaque are measures of subclinical atherosclerosis associated with ischemic stroke and coronary heart disease (CHD). Here, we undertake meta-analyses of genome-wide association studies (GWAS) in 71,128 individuals for cIMT, and 48,434 individuals for carotid plaque traits. We identify eight novel susceptibility loci for cIMT, one independent association at the previously-identified PINX1 locus, and one novel locus for carotid plaque. Colocalization analysis with nearby vascular expression quantitative loci (cis-eQTLs) derived from arterial wall and metabolic tissues obtained from patients with CHD identifies candidate genes at two potentially additional loci, ADAMTS9 and LOXL4. LD score regression reveals significant genetic correlations between cIMT and plaque traits, and both cIMT and plaque with CHD, any stroke subtype and ischemic stroke. Our study provides insights into genes and tissue-specific regulatory mechanisms linking atherosclerosis both to its functional genomic origins and its clinical consequences in humans
    corecore