1,898 research outputs found

    Senior Recital, October 30, 2021

    Get PDF
    Kemp Recital Hall October 30, 2021 Saturday Afternoon 2:00 p.m

    Driving the Crystallization of Zeolites

    Full text link
    [EN] The synthesis of zeolites with new structures and/or improved properties heavily relies on trial and error efforts that are not entirely blind, as the large empirical background accumulated for the last 7 decades can be, to some extent, rationalized and purposefully used to make new materials. The so-called structure-directing factors may be combined to promote (or frustrate) the crystallization of a particular structure. This personal account opens with the concept of geoinspiration, as suggested by Prof. Ruiz-Hitzky, and its application to zeolite synthesis. We then provide a concise overview of structure-direction in the synthesis of zeolites and detail examples, both new and from the literature, on how they can be combined to drive the crystallization towards (or away from) structures displaying particular features.Financial support by the Spanish Ministry of Economy and Competitiveness (MAT2015-71117-R and AGL2015-70235-C2-R) is acknowledged. P. L. is grateful to the China Scholarship Council (CSC) for a fellowship and to the Dalian Institute of Chemical Physics for permission to leave. Thanks are also due to Wikimedia Commons and Mr. A. T. Chang for the picture of the hot springs included in the frontispiece.Lu, P.; Villaescusa Alonso, LA.; Camblor, MA. (2018). Driving the Crystallization of Zeolites. The Chemical Record. 18(7-8):713-723. https://doi.org/10.1002/tcr.201700092S713723187-8Porous Materials 2011Cundy, C. S., & Cox, P. A. (2003). The Hydrothermal Synthesis of Zeolites:  History and Development from the Earliest Days to the Present Time. Chemical Reviews, 103(3), 663-702. doi:10.1021/cr020060iBarrer, R. M. (1948). 33. Synthesis of a zeolitic mineral with chabazite-like sorptive properties. Journal of the Chemical Society (Resumed), 127. doi:10.1039/jr9480000127Rees, L. V. C. (1998). Richard Maling Barrer. 16 June 1910–12 September 1996. Biographical Memoirs of Fellows of the Royal Society, 44, 37-49. doi:10.1098/rsbm.1998.0003Breck, D. W., Eversole, W. G., & Milton, R. M. (1956). NEW SYNTHETIC CRYSTALLINE ZEOLITES. Journal of the American Chemical Society, 78(10), 2338-2339. doi:10.1021/ja01591a082Rabo, J. A., & Schoonover, M. W. (2001). Early discoveries in zeolite chemistry and catalysis at Union Carbide, and follow-up in industrial catalysis. Applied Catalysis A: General, 222(1-2), 261-275. doi:10.1016/s0926-860x(01)00840-7Piccione, P. M., Laberty, C., Yang, S., Camblor, M. A., Navrotsky, A., & Davis, M. E. (2000). Thermochemistry of Pure-Silica Zeolites. The Journal of Physical Chemistry B, 104(43), 10001-10011. doi:10.1021/jp002148aBarrer, R. M., & Denny, P. J. (1961). 201. Hydrothermal chemistry of the silicates. Part IX. Nitrogenous aluminosilicates. Journal of the Chemical Society (Resumed), 971. doi:10.1039/jr9610000971Kerr, G. T., & Kokotailo, G. T. (1961). SODIUM ZEOLITE ZK-4, A NEW SYNTHETIC CRYSTALLINE ALUMINOSILICATE. Journal of the American Chemical Society, 83(22), 4675-4675. doi:10.1021/ja01483a052Kerr, G. T. (1966). Chemistry of Crystalline Aluminosilicates. II. The Synthesis and Properties of Zeolite ZK-4. Inorganic Chemistry, 5(9), 1537-1539. doi:10.1021/ic50043a015Lawton, S. L., & Rohrbaugh, W. J. (1990). The Framework Topology of ZSM-18, a Novel Zeolite Containing Rings of Three (Si,Al)-O Species. Science, 247(4948), 1319-1322. doi:10.1126/science.247.4948.1319Koelmel, C. M., Li, Y. S., Freeman, C. M., Levine, S. M., Hwang, M.-J., Maple, J. R., & Newsam, J. M. (1994). Quantum and Molecular Mechanics Study of the Tris(Quaternary Ammonium) Cation Used as the Zeolite ZSM-18 Synthesis Template. The Journal of Physical Chemistry, 98(49), 12911-12918. doi:10.1021/j100100a017Gies, H., & Marker, B. (1992). The structure-controlling role of organic templates for the synthesis of porosils in the systems SiO2/template/H2O. Zeolites, 12(1), 42-49. doi:10.1016/0144-2449(92)90008-dMoini, A., Schmitt, K. D., Valyocsik, E. W., & Polomski, R. F. (1994). The role of diquaternary cations as directing agents in zeolite synthesis. Zeolites, 14(7), 504-511. doi:10.1016/0144-2449(94)90182-1Struct. BondLee, S.-H., Shin, C.-H., Yang, D.-K., Ahn, S.-D., Nam, I.-S., & Hong, S. B. (2004). Reinvestigation into the synthesis of zeolites using diquaternary alkylammonium ions (CH3)3N+(CH2)nN+(CH3)3 with n=3–10 as structure-directing agents. Microporous and Mesoporous Materials, 68(1-3), 97-104. doi:10.1016/j.micromeso.2003.12.011Hong, S. B., Min, H.-K., Shin, C.-H., Cox, P. A., Warrender, S. J., & Wright, P. A. (2007). Synthesis, Crystal Structure, Characterization, and Catalytic Properties of TNU-9. Journal of the American Chemical Society, 129(35), 10870-10885. doi:10.1021/ja073109gHydrothermal Chemistry of Zeolites 1982Hay, R. L., & Sheppard, R. A. (2001). Occurrence of Zeolites in Sedimentary Rocks: An Overview. Reviews in Mineralogy and Geochemistry, 45(1), 217-234. doi:10.2138/rmg.2001.45.6Camblor, M. A., Villaescusa, L. A., & Díaz‐Cabañas, M. J. (1999). Topics in Catalysis, 9(1/2), 59-76. doi:10.1023/a:1019154304344Caullet, P., Paillaud, J.-L., Simon-Masseron, A., Soulard, M., & Patarin, J. (2005). The fluoride route: a strategy to crystalline porous materials. Comptes Rendus Chimie, 8(3-4), 245-266. doi:10.1016/j.crci.2005.02.001Koller, H., Lobo, R. F., Burkett, S. L., & Davis, M. E. (1995). SiO-.cntdot. .cntdot. .cntdot.HOSi Hydrogen Bonds in As-Synthesized High-Silica Zeolites. The Journal of Physical Chemistry, 99(33), 12588-12596. doi:10.1021/j100033a036Chézeau, J.-M., Delmotte, L., Guth, J.-L., & Soulard, M. (1989). High-resolution solid-state 29Si and 13C n.m.r. on highly siliceous MFI-type zeolites synthesized in nonalkaline fluoride medium. Zeolites, 9(1), 78-80. doi:10.1016/0144-2449(89)90013-4Blasco, T., Camblor, M. A., Corma, A., Esteve, P., Guil, J. M., Martínez, A., … Valencia, S. (1998). Direct Synthesis and Characterization of Hydrophobic Aluminum-Free Ti−Beta Zeolite. The Journal of Physical Chemistry B, 102(1), 75-88. doi:10.1021/jp973288wGUTH, J. L., KESSLER, H., CAULLET, P., HAZM, J., MERROUCHE, A., & PATARIN, J. (1993). F-: A MULTIFUNCTIONAL TOOL FOR MICROPOROUS SOLIDS a) MINERALIZING, STRUCTURE DIRECTING AND TEMPLATING EFFECTS IN THE SYNTHESIS. Proceedings from the Ninth International Zeolite Conference, 215-222. doi:10.1016/b978-1-4832-8383-8.50024-6Zicovich-Wilson, C. M., San-Román, M. L., Camblor, M. A., Pascale, F., & Durand-Niconoff, J. S. (2007). Structure, Vibrational Analysis, and Insights into Host−Guest Interactions in As-Synthesized Pure Silica ITQ-12 Zeolite by Periodic B3LYP Calculations. Journal of the American Chemical Society, 129(37), 11512-11523. doi:10.1021/ja0730361Zicovich-Wilson, C. M., Gándara, F., Monge, A., & Camblor, M. A. (2010). In SituTransformation of TON Silica Zeolite into the Less Dense ITW: Structure-Direction Overcoming Framework Instability in the Synthesis of SiO2Zeolites. Journal of the American Chemical Society, 132(10), 3461-3471. doi:10.1021/ja9094318Rojas, A., Martínez-Morales, E., Zicovich-Wilson, C. M., & Camblor, M. A. (2012). Zeolite Synthesis in Fluoride Media: Structure Direction toward ITW by Small Methylimidazolium Cations. Journal of the American Chemical Society, 134(4), 2255-2263. doi:10.1021/ja209832yRojas, A., San-Roman, M. L., Zicovich-Wilson, C. M., & Camblor, M. A. (2013). Host–Guest Stabilization of a Zeolite Strained Framework: In Situ Transformation of Zeolite MTW into the Less Dense and More Strained ITW. Chemistry of Materials, 25(5), 729-738. doi:10.1021/cm303709eVillaescusa, L. A., Barrett, P. A., & Camblor, M. A. (1998). Calcination of Octadecasil:  Fluoride Removal and Symmetry of the Pure SiO2Host. Chemistry of Materials, 10(12), 3966-3973. doi:10.1021/cm9804113Camblor, M. A., Corma, A., & Valencia, S. (1996). Spontaneous nucleation and growth of pure silica zeolite-? free of connectivity defects. Chemical Communications, (20), 2365. doi:10.1039/cc9960002365Camblor, M. A., Corma, A., Lightfoot, P., Villaescusa, L. A., & Wright, P. A. (1997). Synthesis and Structure of ITQ-3, the First Pure Silica Polymorph with a Two-Dimensional System of Straight Eight-Ring Channels. Angewandte Chemie International Edition in English, 36(23), 2659-2661. doi:10.1002/anie.199726591Barrett, P. A., Camblor, M. A., Corma, A., Jones, R. H., & Villaescusa, L. A. (1997). Structure of ITQ-4, a New Pure Silica Polymorph Containing Large Pores and a Large Void Volume. Chemistry of Materials, 9(8), 1713-1715. doi:10.1021/cm970173wBarrer, R. M., & Baynham, J. W. (1956). 562. The hydrothermal chemistry of the silicates. Part VII. Synthetic potassium aluminosilicates. Journal of the Chemical Society (Resumed), 2882. doi:10.1039/jr9560002882Díaz-Cabañas, M.-J., & Barrett, P. A. (1998). Synthesis and structure of pure SiO2 chabazite: the SiO2 polymorph with the lowest framework density. Chemical Communications, (17), 1881-1882. doi:10.1039/a804800bVillaescusa, L. A., Barrett, P. A., & Camblor, M. A. (1998). Synthesis and structure of ITQ-9: a new microporous SiO2 polymorph. Chemical Communications, (21), 2329-2330. doi:10.1039/a806696eVillaescusa, L. A., Barrett, P. A., & Camblor, M. A. (1999). ITQ-7: A New Pure Silica Polymorph with a Three-Dimensional System of Large Pore Channels. Angewandte Chemie International Edition, 38(13-14), 1997-2000. doi:10.1002/(sici)1521-3773(19990712)38:13/143.0.co;2-uBarrett, P. A., Boix, T., Puche, M., Olson, D. H., Jordan, E., Koller, H., & Camblor, M. A. (2003). ITQ-12: a new microporous silica polymorph potentially useful for light hydrocarbon separationsElectronic supplementary information (ESI) available: details of the structure solution, Rietveld refinements in space groups C2/m and Cm and energy minimisation calculations in C2/m, Cm and C2. See http://www.rsc.org/suppdata/cc/b3/b306440a/. Chemical Communications, (17), 2114. doi:10.1039/b306440aBarrett, P. A., Díaz-Cabañas, M.-J., & Camblor, M. A. (1999). Crystal Structure of Zeolite MCM-35 (MTF). Chemistry of Materials, 11(10), 2919-2927. doi:10.1021/cm9910660PhD Thesis 1997Liu, Z., Ohsuna, T., Terasaki, O., Camblor, M. A., Diaz-Cabañas, M.-J., & Hiraga, K. (2001). The First Zeolite with Three-Dimensional Intersecting Straight-Channel System of 12-Membered Rings. Journal of the American Chemical Society, 123(22), 5370-5371. doi:10.1021/ja0107778Tang, L., Shi, L., Bonneau, C., Sun, J., Yue, H., Ojuva, A., … Zou, X. (2008). A zeolite family with chiral and achiral structures built from the same building layer. Nature Materials, 7(5), 381-385. doi:10.1038/nmat2169Rojas, A., & Camblor, M. A. (2012). A Pure Silica Chiral Polymorph with Helical Pores. Angewandte Chemie International Edition, 51(16), 3854-3856. doi:10.1002/anie.201108753Smith, J. V., Pluth, J. J., & Andries, K. J. (1993). The framework topology of magnesiumaluminophosphate structure type 36. Zeolites, 13(3), 166-169. doi:10.1016/s0144-2449(05)80273-8Burton, A., Darton, R. J., Davis, M. E., Hwang, S.-J., Morris, R. E., Ogino, I., & Zones, S. I. (2006). Structure-Directing Agent Location and Non-Centrosymmetric Structure of Fluoride-Containing Zeolite SSZ-55. The Journal of Physical Chemistry B, 110(11), 5273-5278. doi:10.1021/jp054950oMoliner, M., González, J., Portilla, M. T., Willhammar, T., Rey, F., Llopis, F. J., … Corma, A. (2011). A New Aluminosilicate Molecular Sieve with a System of Pores between Those of ZSM-5 and Beta Zeolite. Journal of the American Chemical Society, 133(24), 9497-9505. doi:10.1021/ja2015394Corma, A., Rey, F., Rius, J., Sabater, M. J., & Valencia, S. (2004). Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature, 431(7006), 287-290. doi:10.1038/nature02909Vortmann, S., Marler, B., Gies, H., & Daniels, P. (1995). Synthesis and crystal structure of the new borosilicate zeolite RUB-13. Microporous Materials, 4(2-3), 111-121. doi:10.1016/0927-6513(94)00090-iLee, G. (2002). Polymethylated [4.1.1] Octanes Leading to Zeolite SSZ-50. Journal of Solid State Chemistry, 167(2), 289-298. doi:10.1016/s0022-4596(02)99549-6Shannon, M. D., Casci, J. L., Cox, P. A., & Andrews, S. J. (1991). Structure of the two-dimensional medium-pore high-silica zeolite NU-87. Nature, 353(6343), 417-420. doi:10.1038/353417a0Zones, S. I., Hwang, S.-J., Elomari, S., Ogino, I., Davis, M. E., & Burton, A. W. (2005). The fluoride-based route to all-silica molecular sieves; a strategy for synthesis of new materials based upon close-packing of guest–host products. Comptes Rendus Chimie, 8(3-4), 267-282. doi:10.1016/j.crci.2004.12.009Briscoe, N. A., Johnson, D. W., Shannon, M. D., Kokotailo, G. T., & McCusker, L. B. (1988). The framework topology of zeolite EU-1. Zeolites, 8(1), 74-76. doi:10.1016/s0144-2449(88)80033-2PhD Thesis 1999Arranz, M., Pérez-Pariente, J., Wright, P. A., Slawin, A. M. Z., Blasco, T., Gómez-Hortigüela, L., & Corà, F. (2005). Cooperative Structure-Directing Effect of Fluorine-Containing Organic Molecules and Fluoride Anions in the Synthesis of Zeolites. Chemistry of Materials, 17(17), 4374-4385. doi:10.1021/cm050971jLobo, R. F., Pan, M., Chan, I., Li, H.-X., Medrud, R. C., Zones, S. I., … Davis, M. E. (1993). SSZ-26 and SSZ-33: Two Molecular Sieves with Intersecting 10- and 12-Ring Pores. Science, 262(5139), 1543-1546. doi:10.1126/science.262.5139.1543Patinec, V., Wright, P. A., Lightfoot, P., Aitken, R. A., & Cox, P. A. (1999). Synthesis of a novel microporous magnesioaluminophosphate, STA-6, containing an unbound azamacrocycle †. Journal of the Chemical Society, Dalton Transactions, (22), 3909-3911. doi:10.1039/a907259dWragg, D. S., Morris, R., Burton, A. W., Zones, S. I., Ong, K., & Lee, G. (2007). The Synthesis and Structure of SSZ-73:  an All-Silica Zeolite with an Unusual Framework Topology. Chemistry of Materials, 19(16), 3924-3932. doi:10.1021/cm0705284Cantín, A., Corma, A., Leiva, S., Rey, F., Rius, J., & Valencia, S. (2005). Synthesis and Structure of the Bidimensional Zeolite ITQ-32 with Small and Large Pores. Journal of the American Chemical Society, 127(33), 11560-11561. doi:10.1021/ja053040hBaerlocher, C., Xie, D., McCusker, L. B., Hwang, S.-J., Chan, I. Y., Ong, K., … Zones, S. I. (2008). Ordered silicon vacancies in the framework structure of the zeolite catalyst SSZ-74. Nature Materials, 7(8), 631-635. doi:10.1038/nmat2228Castañeda, R., Corma, A., Fornés, V., Rey, F., & Rius, J. (2003). Synthesis of a New Zeolite Structure ITQ-24, with Intersecting 10- and 12-Membered Ring Pores. Journal of the American Chemical Society, 125(26), 7820-7821. doi:10.1021/ja035534pCantín, A., Corma, A., Diaz-Cabanas, M. J., Jordá, J. L., & Moliner, M. (2006). Rational Design and HT Techniques Allow the Synthesis of New IWR Zeolite Polymorphs. Journal of the American Chemical Society, 128(13), 4216-4217. doi:10.1021/ja0603599Zones, S. I., Darton, R. J., Morris, R., & Hwang, S.-J. (2005). Studies on the Role of Fluoride Ion vs Reaction Concentration in Zeolite Synthesis. The Journal of Physical Chemistry B, 109(1), 652-661. doi:10.1021/jp0402434Zones, S. I., Burton, A. W., Lee, G. S., & Olmstead, M. M. (2007). A Study of Piperidinium Structure-Directing Agents in the Synthesis of Silica Molecular Sieves under Fluoride-Based Conditions. Journal of the American Chemical Society, 129(29), 9066-9079. doi:10.1021/ja0709122Burton, A. W., Lee, G. S., & Zones, S. I. (2006). Phase selectivity in the syntheses of cage-based zeolite structures: An investigation of thermodynamic interactions between zeolite hosts and structure directing agents by molecular modeling. Microporous and Mesoporous Materials, 90(1-3), 129-144. doi:10.1016/j.micromeso.2005.11.022Lopes, C. W., Gómez-Hortigüela, L., Rojas, A., & Pergher, S. B. C. (2017). Fluoride-mediated synthesis of TON and MFI zeolites using 1-butyl-3-methylimidazolium as structure-directing agent. Microporous and Mesoporous Materials, 252, 29-36. doi:10.1016/j.micromeso.2017.06.017Geisinger, K. L., Gibbs, G. V., & Navrotsky, A. (1985). A molecular orbital study of bond length and angle variations in framework structures. Physics and Chemistry of Minerals, 11(6), 266-283. doi:10.1007/bf00307405Hammonds, K. D., Heine, V., & Dove, M. T. (1998). Rigid-Unit Modes and the Quantitative Determination of the Flexibility Possessed by Zeolite Frameworks. The Journal of Physical Chemistry B, 102(10), 1759-1767. doi:10.1021/jp980006zMerlino, S. (1990). Lovdarite, K4Na12(Be8Si28O72) • 18 H2O, a zeolite-like mineral: structural features and OD character. European Journal of Mineralogy, 2(6), 809-818. doi:10.1127/ejm/2/6/0809De Man, A. J. M., Ueda, S., Annen, M. J., Davis, M. E., & van Santen, R. A. (1992). The stability and vibrational spectra of three-ring containing zeolitic silica polymorphs. Zeolites, 12(7), 789-800. doi:10.1016/0144-2449(92)90051-pBnmner, G. O., & Meier, W. M. (1989). Framework density distribution of zeolite-type tetrahedral nets. Nature, 337(6203), 146-147. doi:10.1038/337146a0Annen, M. J., Davis, M. E., Higgins, J. B., & Schlenker, J. L. (1991). VPI-7: the first zincosilicate molecular sieve containing three-membered T-atom rings. Journal of the Chemical Society, Chemical Communications, (17), 1175. doi:10.1039/c39910001175McCusker, L. B., Grosse-Kunstleve, R. W., Baerlocher, C., Yoshikawa, M., & Davis, M. E. (1996). Synthesis optimization and structure analysis of the zincosilicate molecular sieve VPI-9. Microporous Materials, 6(5-6), 295-309. doi:10.1016/0927-6513(96)00015-6Röhrig, C., & Gies, H. (1995). A New Zincosilicate Zeolite with Nine-Ring Channels. Angewandte Chemie International Edition in English, 34(1), 63-65. doi:10.1002/anie.199500631Ro¨hrig, C., Gies, H., & Marler, B. (1994). Rietveld refinement of the crystal structure of the synthetic porous zincosilicate VPI-7. Zeolites, 14(7), 498-503. doi:10.1016/0144-2449(94)90181-3Camblor, M. A., & Davis, M. E. (1994). 29Si MAS NMR Spectroscopy of Tectozincosilicates. The Journal of Physical Chemistry, 98(50), 13151-13156. doi:10.1021/j100101a010Petersen, O. V., Giester, G., Brandstatter, F., & Niedermayr, G. (2002). NABESITE, Na2BeSi4O10{middle dot}4H2O, A NEW MINERAL SPECIES FROM THE ILIMAUSSAQ ALKALINE COMPLEX, SOUTH GREENLAND. The Canadian Mineralogist, 40(1), 173-181. doi:10.2113/gscanmin.40.1.173Cheetham, A. K., Fjellvg, H., Gier, T. E., Kongshaug, K. O., Lillerud, K. P., & Stucky, G. D. (2001). 05-O-05-Very open microporous materials: from concept to reality. Zeolites and Mesoporous Materials at the dawn of the 21st century, Proceedings of the 13th International Zeolite Conference,, 158. doi:10.1016/s0167-2991(01)81268-4Walter, F. (1992). Weinebeneite, CaBe3(PO4)2(OH)2 ∙ 4H2O, a new mineral species: mineral data and crystal structure. European Journal of Mineralogy, 4(6), 1275-1284. doi:10.1127/ejm/4/6/1275Littlefield, B. T. R., & Weller, M. T. (2012). Lightweight nanoporous metal hydroxide-rich zeotypes. Nature Communications, 3(1). doi:10.1038/ncomms2129Sedlmaier, S. J., Döblinger, M., Oeckler, O., Weber, J., Schmedt auf der Günne, J., & Schnick, W. (2011). Unprecedented Zeolite-Like Framework Topology Constructed from Cages with 3-Rings in a Barium Oxonitridophosphate. Journal of the American Chemical Society, 133(31), 12069-12078. doi:10.1021/ja202159ePark, S. H., Daniels, P., & Gies, H. (2000). RUB-23: a new microporous lithosilicate containing spiro-5 building units. Microporous and Mesoporous Materials, 37(1-2), 129-143. doi:10.1016/s1387-1811(99)00260-7Conradsson, T., Dadachov, M. ., & Zou, X. . (2000). Synthesis and structure of (Me3N)6[Ge32O64](H2O)4.5, a thermally stable novel zeotype with 3D interconnected 12-ring channels. Microporous and Mesoporous Materials, 41(1-3), 183-191. doi:10.1016/s1387-1811(00)00288-2Corma, A., Diaz-Cabanas, M. J., Jiang, J., Afeworki, M., Dorset, D. L., Soled, S. L., & Strohmaier, K. G. (2010). Extra-large pore zeolite (ITQ-40) with the lowest framework density containing double four- and double three-rings. Proceedings of the National Academy of Sciences, 107(32), 13997-14002. doi:10.1073/pnas.1003009107Jiang, J., Jorda, J. L., Diaz-Cabanas, M. J., Yu, J., & Corma, A. (2010). The Synthesis of an Extra-Large-Pore Zeolite with Double Three-Ring Building Units and a Low Framework Density. Angewandte Chemie International Edition, 49(29), 4986-4988. doi:10.1002/anie.201001506Blasco, T., Corma, A., Díaz-Cabañas, M. J., Rey, F., Vidal-Moya, J. A., & Zicovich-Wilson, C. M. (2002). Preferential Location of Ge in the Double Four-Membered Ring Units of ITQ-7 Zeolite. The Journal of Physical Chemistry B, 106(10), 2634-2642. doi:10.1021/jp013302bSartbaeva, A., Wells, S. A., Treacy, M. M. J., & Thorpe, M. F. (2006). The flexibility window in zeolites. Nature Materials, 5(12), 962-965. doi:10.1038/nmat1784Medina, M. E., Platero-Prats, A. E., Snejko, N., Rojas, A., Monge, A., Gándara, F., … Camblor, M. A. (2011). Towards Inorganic Porous Materials by Design: Looking for New Architectures. Advanced Materials, 23(44), 5283-5292. doi:10.1002/adma.201101852Kapko, V., Dawson, C., Treacy, M. M. J., & Thorpe, M. F. (2010). Flexibility of ideal zeolite frameworks. Physical Chemistry Chemical Physics, 12(30), 8531. doi:10.1039/c003977bSastre, G., & Corma, A. (2010). Predicting Structural Feasibility of Silica and Germania Zeolites. The Journal of Physical Chemistry C, 114(3), 1667-1673. doi:10.1021/jp909348sRojas, A., Gómez-Hortigüela, L., & Camblor, M. A. (2013). Benzylimidazolium cations as zeolite structure-directing agents. Differences in performance brought about by a small change in size. Dalton Trans., 42(7), 2562-2571. doi:10.1039/c2dt32230gBoal, B. W., Deem, M. W., Xie, D., Kang, J. H., Davis, M. E., & Zones, S. I. (2016). Synthesis of Germanosilicate Molecular Sieves from Mono- and Di-Quaternary Ammonium OSDAs Constructed from Benzyl Imidazolium Derivatives: Stabilization of Large Micropo

    A Sodium laser guide star coupling efficiency measurement method

    Get PDF
    Large telescope's adaptive optics (AO) system requires one or several bright artificial laser guide stars to improve its sky coverage. The recent advent of high power sodium laser is perfect for such application. However, besides the output power, other parameters of the laser also have significant impact on the brightness of the generated sodium laser guide star mostly in non-linear relationships. When tuning and optimizing these parameters it is necessary to tune based on a laser guide star generation performance metric. Although return photon flux is widely used, variability of atmosphere and sodium layer make it difficult to compare from site to site even within short time period for the same site. A new metric, coupling efficiency is adopted in our field tests. In this paper, we will introduce our method for measuring the coupling efficiency of a 20W class pulse sodium laser for AO application during field tests that were conducted during 2013-2015

    A multiphysics modeling and experimental analysis of pressure contacts in power electronics applications

    Get PDF
    This paper details a modeling and experimental assessment of the packaging process for a silicon carbide Schottky diode using pressure contacts. The work detailed in this paper is original, as it applies a combined electrothermomechanical modeling analysis to this packaging method supported by experimental validation. A key design objective for this packaging process is to identify suitable contact pad materials, heatsinks, and process variables such as clamping force to meet electrical, thermal, and reliability specifications. Molybdenum and aluminum graphite (ALG) have been identified as two suitable materials for the contact pads. Clamping forces ranging from 300 to 500 N and electric current ranging from 10 to 30 A have been investigated in terms of the resulting electrical and thermal contact resistances, temperatures, and stresses induced across the package. The performance of two heatsink designs with heat dissipation rates of 12893 and 4991 W/m2k has also been investigated. Both the modeling and initial experimental results detailed in this paper show that ALG provides better performance in terms of generating a lower average chip temperature. Both temperature and stress in the diode are predicted as a function of clamping force and load current. This will aid the packaging engineer to identify suitable process parameters to meet junction temperature requirements at different applied load currents

    Electron-Photon Exchange-Correlation Approximation for QEDFT

    Full text link
    Quantum-electrodynamical density-functional theory (QEDFT) provides a promising avenue for exploring complex light-matter interactions in optical cavities for real materials. Similar to conventional density-functional theory, the Kohn-Sham formulation of QEDFT needs approximations for the generally unknown exchange-correlation functional. In addition to the usual electron-electron exchange-correlation potential, an approximation for the electron-photon exchange-correlation potential is needed. A recent electron-photon exchange functional [C. Sch\"afer et al., Proc. Natl. Acad. Sci. USA, 118, e2110464118 (2021), https://www.pnas.org/doi/abs/10.1073/pnas.2110464118], derived from the equation of motion of the non-relativistic Pauli-Fierz Hamiltonian, shows robust performance in one-dimensional systems across weak- and strong-coupling regimes. Yet, its performance in reproducing electron densities in higher dimensions remains unexplored. Here we consider this QEDFT functional approximation from one to three-dimensional finite systems and across weak to strong light-matter couplings. The electron-photon exchange approximation provides excellent results in the ultra-strong-coupling regime. However, to ensure accuracy also in the weak-coupling regime across higher dimensions, we introduce a computationally efficient renormalization factor for the electron-photon exchange functional, which accounts for part of the electron-photon correlation contribution. These findings extend the applicability of photon-exchange-based functionals to realistic cavity-matter systems, fostering the field of cavity QED (quantum electrodynamics) materials engineering.Comment: 15 pages, 4 figure

    A time-based Chern number in periodically-driven systems in the adiabatic limit

    Get PDF
    To define the topology of driven systems, recent works have proposed synthetic dimensions as a way to uncover the underlying parameter space of topological invariants. Using time as a synthetic dimension, together with a momentum dimension, gives access to a synthetic 2D Chern number. It is, however, still unclear how the synthetic 2D Chern number is related to the Chern number that is defined from a parametric variable that evolves with time. Here we show that in periodically driven systems in the adiabatic limit, the synthetic 2D Chern number is a multiple of the Chern number defined from the parametric variable. The synthetic 2D Chern number can thus be engineered via how the parametric variable evolves in its own space. We justify our claims by investigating Thouless pumping in two 1D tight-binding models, a three-site chain model and a two-1D-sliding-chains model. The present findings could be extended to higher dimensions and other periodically driven configurations.Comment: 6 pages, 4 figure

    Enantioselective approach to indolizidine and quinolizidine scaffolds : application to the synthesis of peptide mimics

    Get PDF
    An enantioselective approach to substituted indolizidine and quinolizidine frameworks has been developed. Key steps of the synthesis are the enantioselective, palladium-catalyzed N-allylation of an imide, the nucleophilic allylation of an acyliminium ion and a ring closing metathesis. This general strategy has been applied to the synthesis of indolizidine peptide mimics, starting from a chiral imide derived from L-aspartic acid. It was observed that the preexisting stereogenic center of this substrate has a moderate influence on the stereoselectivity of the electrophilic allylation, which is mainly determined by the sense of chirality of the catalyst
    corecore