1,630 research outputs found

    Submillisecond monaural coincidence detection by octopus cells

    Get PDF
    In vitro and in silico studies have suggested that octopus cells in the mammalian posterior ventral cochlear nucleus (PVCN) are monaural coincidence detectors that encode the temporal structure of complex sounds. In vivo studies on these neurons, however, are rare due to several technical difficulties. We used sharp high-impedance electrodes in anesthetized gerbils to study the responses of octopus cells to click trains. We find that, even though octopus cells only fire an onset spike to pure tones, they fire in sustained fashion to trains of transients. They entrain to click trains up to 400 Hz with vector strength almost equal to one and spike jitter at similar to 100 microseconds. This temporal precision is unmatched by any other cell type in the auditory system

    Predictive biometrics: A review and analysis of predicting personal characteristics from biometric data

    Get PDF
    Interest in the exploitation of soft biometrics information has continued to develop over the last decade or so. In comparison with traditional biometrics, which focuses principally on person identification, the idea of soft biometrics processing is to study the utilisation of more general information regarding a system user, which is not necessarily unique. There are increasing indications that this type of data will have great value in providing complementary information for user authentication. However, the authors have also seen a growing interest in broadening the predictive capabilities of biometric data, encompassing both easily definable characteristics such as subject age and, most recently, `higher level' characteristics such as emotional or mental states. This study will present a selective review of the predictive capabilities, in the widest sense, of biometric data processing, providing an analysis of the key issues still adequately to be addressed if this concept of predictive biometrics is to be fully exploited in the future

    Low-field magnetoresistance in GaAs 2D holes

    Full text link
    We report low-field magnetotransport data in two-dimensional hole systems in GaAs/AlGaAs heterostructures and quantum wells, in a large density range, 2.5×1010≀p≀4.0×10112.5 \times 10^{10} \leq p \leq 4.0 \times 10^{11} cm−2^{-2}, with primary focus on samples grown on (311)A GaAs substrates. At high densities, p≳1×1011p \gtrsim 1 \times 10^{11} cm−2^{-2}, we observe a remarkably strong positive magnetoresistance. It appears in samples with an anisotropic in-plane mobility and predominantly along the low-mobility direction, and is strongly dependent on the perpendicular electric field and the resulting spin-orbit interaction induced spin-subband population difference. A careful examination of the data reveals that the magnetoresistance must result from a combination of factors including the presence of two spin-subbands, a corrugated quantum well interface which leads to the mobility anisotropy, and possibly weak anti-localization. None of these factors can alone account for the observed positive magnetoresistance. We also present the evolution of the data with density: the magnitude of the positive magnetoresistance decreases with decreasing density until, at the lowest density studied (p=2.5×1010p = 2.5 \times 10^{10} cm−2^{-2}), it vanishes and is replaced by a weak negative magnetoresistance.Comment: 8 pages, 8 figure

    Serine-385 phosphorylation of inwardly rectifying K(+) channel subunit (Kir6.2) by AMP-dependent protein kinase plays a key role in rosiglitazone-induced closure of the K(ATP) channel and insulin secretion in rats

    Get PDF
    Rosiglitazone, an insulin sensitiser, not only improves insulin sensitivity but also enhances insulin secretory capacity by ameliorating gluco- and lipotoxicity in beta cells. Rosiglitazone can stimulate insulin secretion at basal and high glucose levels via a phosphatidylinositol 3-kinase (PI3K)-dependent pathway. We hypothesised that regulation of phosphorylation of the ATP-sensitive potassium (K(ATP)) channel might serve as a key step in the regulation of insulin secretion. Insulin secretory responses were studied in an isolated pancreas perfusion system, cultured rat islets and MIN6 and RINm5F beta cells. Signal transduction pathways downstream of PI3K were explored to link rosiglitazone to K(ATP) channel conductance with patch clamp techniques and insulin secretion measured by ELISA. Rosiglitazone stimulated AMP-activated protein kinase (AMPK) activity and induced inhibition of the K(ATP) channel conductance in islet beta cells; both effects were blocked by the PI3K inhibitor LY294002. Following stimulation of AMPK by 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), a pharmacological activator, both AICAR-stimulated insulin secretion and inhibition of K(ATP) channel conductance were unaffected by LY294002, indicating that AMPK activation occurs at a site downstream of PI3K activity. The serine residue at amino acid position 385 of Kir6.2 was found to be the substrate phosphorylation site of AMPK when activated by rosiglitazone or AICAR. Our data indicate that PI3K-dependent activation of AMPK is required for rosiglitazone-stimulated insulin secretion in pancreatic beta cells. Phosphorylation of the Ser(385) residue of the Kir6.2 subunit of the K(ATP) channel by AMPK may play a role in insulin secretion

    An IRAK1-PIN1 signalling axis drives intrinsic tumour resistance to radiation therapy

    Get PDF
    Drug-based strategies to overcome tumour resistance to radiotherapy (R-RT) remain limited by the single-agent toxicity of traditional radiosensitizers (for example, platinums) and a lack of targeted alternatives. In a screen for compounds that restore radiosensitivity in p53 mutant zebrafish while tolerated in non-irradiated wild-type animals, we identified the benzimidazole anthelmintic oxfendazole. Surprisingly, oxfendazole acts via the inhibition of IRAK1, a kinase thus far implicated in interleukin-1 receptor (IL-1R) and Toll-like receptor (TLR) immune responses. IRAK1 drives R-RT in a pathway involving IRAK4 and TRAF6 but not the IL-1R/TLR-IRAK adaptor MyD88. Rather than stimulating nuclear factor-ÎșB, radiation-activated IRAK1 prevented apoptosis mediated by the PIDDosome complex (comprising PIDD, RAIDD and caspase-2). Countering this pathway with IRAK1 inhibitors suppressed R-RT in tumour models derived from cancers in which TP53 mutations predict R-RT. Moreover, IRAK1 inhibitors synergized with inhibitors of PIN1, a prolyl isomerase essential for IRAK1 activation in response to pathogens and, as shown here, in response to ionizing radiation. These data identify an IRAK1 radiation-response pathway as a rational chemoradiation therapy target

    Roughness distributions for 1/f^alpha signals

    Full text link
    The probability density function (PDF) of the roughness, i.e., of the temporal variance, of 1/f^alpha noise signals is studied. Our starting point is the generalization of the model of Gaussian, time-periodic, 1/f noise, discussed in our recent Letter [T. Antal et al., PRL, vol. 87, 240601 (2001)], to arbitrary power law. We investigate three main scaling regions, distinguished by the scaling of the cumulants in terms of the microscopic scale and the total length of the period. Various analytical representations of the PDF allow for a precise numerical evaluation of the scaling function of the PDF for any alpha. A simulation of the periodic process makes it possible to study also non-periodic signals on short intervals embedded in the full period. We find that for alpha=<1/2 the scaled PDF-s in both the periodic and the non-periodic cases are Gaussian, but for alpha>1/2 they differ from the Gaussian and from each other. Both deviations increase with growing alpha. That conclusion, based on numerics, is reinforced by analytic results for alpha=2 and alpha->infinity. We suggest that our theoretical and numerical results open a new perspective on the data analysis of 1/f^alpha processes.Comment: 12 pages incl. 6 figures, with RevTex4, for A4 paper, in v2 some references were correcte

    Protons in near earth orbit

    Get PDF
    The proton spectrum in the kinetic energy range 0.1 to 200 GeV was measured by the Alpha Magnetic Spectrometer (AMS) during space shuttle flight STS-91 at an altitude of 380 km. Above the geomagnetic cutoff the observed spectrum is parameterized by a power law. Below the geomagnetic cutoff a substantial second spectrum was observed concentrated at equatorial latitudes with a flux ~ 70 m^-2 sec^-1 sr^-1. Most of these second spectrum protons follow a complicated trajectory and originate from a restricted geographic region.Comment: 19 pages, Latex, 7 .eps figure

    Search for antihelium in cosmic rays

    Get PDF
    The Alpha Magnetic Spectrometer (AMS) was flown on the space shuttle Discovery during flight STS-91 in a 51.7 degree orbit at altitudes between 320 and 390 km. A total of 2.86 * 10^6 helium nuclei were observed in the rigidity range 1 to 140 GV. No antihelium nuclei were detected at any rigidity. An upper limit on the flux ratio of antihelium to helium of < 1.1 * 10^-6 is obtained.Comment: 18 pages, Latex, 9 .eps figure

    A Study of Cosmic Ray Secondaries Induced by the Mir Space Station Using AMS-01

    Get PDF
    The Alpha Magnetic Spectrometer (AMS-02) is a high energy particle physics experiment that will study cosmic rays in the ∌100MeV\sim 100 \mathrm{MeV} to 1TeV1 \mathrm{TeV} range and will be installed on the International Space Station (ISS) for at least 3 years. A first version of AMS-02, AMS-01, flew aboard the space shuttle \emph{Discovery} from June 2 to June 12, 1998, and collected 10810^8 cosmic ray triggers. Part of the \emph{Mir} space station was within the AMS-01 field of view during the four day \emph{Mir} docking phase of this flight. We have reconstructed an image of this part of the \emph{Mir} space station using secondary π−\pi^- and Ό−\mu^- emissions from primary cosmic rays interacting with \emph{Mir}. This is the first time this reconstruction was performed in AMS-01, and it is important for understanding potential backgrounds during the 3 year AMS-02 mission.Comment: To be submitted to NIM B Added material requested by referee. Minor stylistic and grammer change
    • 

    corecore