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Summary
In vitro and in silico studies have suggested that octopus cells in the mammalian posterior ventral cochlear nucleus
(PVCN) are monaural coincidence detectors that encode the temporal structure of complex sounds. In vivo studies
on these neurons, however, are rare due to several technical difficulties. We used sharp high-impedance electrodes
in anesthetized gerbils to study the responses of octopus cells to click trains. We find that, even though octopus
cells only fire an onset spike to pure tones, they fire in sustained fashion to trains of transients. They entrain to
click trains up to 400Hz with vector strength almost equal to one and spike jitter at ∼100 microseconds. This
temporal precision is unmatched by any other cell type in the auditory system.

© 2018 The Author(s). Published by S. Hirzel Verlag · EAA. This is an open access article under the terms of the
Creative Commons Attribution (CCBY4.0) license (https://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Octopus cells are one of the least studied projection cells in
the mammalian cochlear nucleus in terms of in vivo phys-
iology. Located in the posterior ventral cochlear nucleus
(PVCN), their dendrites are thought to integrate inputs
from numerous (>60) auditory nerve fibers and send exci-
tatory projections to the contralateral superior paraolivary
nucleus (SPN) and ventral nucleus of the lateral lemniscus
(VNLL) [1, 2, 3, 4]. There is no physiological evidence
for inhibitory inputs, and each auditory nerve fiber pro-
duces only minor excitation [3]. Their biophysical proper-
ties are unique among other cell types in the cochlear nu-
cleus: they have an extremely fast membrane time constant
(<1ms) and an extremely low input resistance (<10MΩ)
[3]. These anatomical and physiological properties has led
to the monaural coincidence detection hypothesis: octopus
cells fire only when multiple auditory fiber inputs are acti-
vated over a very brief time window [5].

Despite many anatomical, in vitro, and in silico stud-
ies, knowledge of in vivo responses is limited. Single-cell
labeling studies show that octopus cells generate “Onset
I” (Oi) or “Onset L” (OL) responses to high-frequency
pure tones, i.e. fire only one onset spike with no or little
sustained activity [4, 6, 7, 8]. They have broad frequency
tuning and high thresholds, consistent with their dendritic
anatomy and the coincidence detection hypothesis[4, 6, 8].
Oi units can fire almost perfectly entrained spikes to cer-
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tain periodic stimuli: low frequency tones at high intensi-
ties [6, 9, 10], sinusoidally amplitude modulated sounds
[10], and click trains [6, 5, 11].

We set out to more fully understand the response of oc-
topus cells and the underlying cellular mechanisms, using
techniques requiring a small animal model. Since little is
known regarding the physiology of these cells in gerbil [7],
we first examined their responses to click trains in com-
parison to other cell types in the cochlear nucleus. We find
that octopus cells are the only cell type showing spike en-
trainment in response to click trains up to ∼400Hz. Fur-
thermore, the spike jitter is the lowest among all the cell
types studied (∼100 µs).

2. Methods

2.1. Animal preparation

Eleven Mongolian gerbils of either sex (postnatal days
160 ±72, mean ±sd) were used. All procedures were ap-
proved by KU Leuven Ethics Committee for Animal Ex-
periments. Atropine (0.05mg/kg, i.p.) was given to min-
imize mucus secretion, and anesthesia was induced with
a ketamine (80mg/kg) / xylazine (12mg/kg) mixture in
0.9% NaCl (i.p). Anesthesia was maintained by giving 1/3
of the induction dose every 40-60 minutes or when the
animal showed paw-pinch reflex. The animal was trans-
ferred to a double-walled soundproof room and placed on
a homeothermic blanket to keep its body temperature at
37 ◦C. The head was then fixed to a stereotaxic frame via a
head bar glued to the frontal bone. To expose the cochlear
nucleus, a hole was drilled manually on one side of the
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posterior skull and the lateral part of the cerebellum was
aspirated. Part of the ipsilateral pinna was removed to al-
low a sound-delivery earpiece to fit into the ear canal. In
some cases a small amount of silicon oil or warmed 2%
agar was placed on the surface of the cochlear nucleus to
minimize brain pulsations.

2.2. Electrophysiology

Borosilicate glass micropipettes (80–120MΩ, WPI1B100
F-6) were pulled on a Sutter P-87 puller, filled with 2M
KCl or NaCl, mounted on a hydraulic microdrive sup-
ported by a micromanipulator, and advanced into the
cochlear nucleus from the dorsal side with visual guid-
ance. After penetrating the surface of the cochlear nu-
cleus, the pipette was advanced in 1-µm steps until large
monopolar (indicative of an axon) or bipolar action poten-
tials (indicative of a soma) were observed. Occasionally a
negative DC shift was observed, suggesting a penetration
into an axon or a soma. Extracellular and intracellular sig-
nals were amplified by an Axoclamp 2B amplifier (Axon
instruments), bandpass filtered at 300 to 3000Hz (PARC
113 amplifier, Princeton Applied Research), and moni-
tored on an oscilloscope (DPO 3014, Tektronix). Spikes
were converted to standard pulses via a custom-built peak
detection triggering circuit and were time-stamped at 1-
µs resolution. These data were acquired by a custom writ-
ten package in Matlab through TDT System III hardware
(Tucker Davis Technologies).

2.3. Sound stimulation

Acoustic stimuli were generated by custom written soft-
ware in Matlab and TDT system III hardware, and
were delivered through a dynamic (Super Tweeter, Radio
Shack) or Etymotic phone (ER-1 or 2) connected to a plas-
tic earpiece inserted in the exposed ear canal. The transfer
function of the closed acoustic system was measured with
a probe tip coupled to a 0.5-inch condenser microphone
and a conditioning amplifier (Bruel & Kjaer). For each
unit a frequency threshold tuning curve was obtained via
an automated tracking algorithm. Short tone bursts (dura-
tion: 25ms; repetition interval: 100ms; repetition times:
200; rise-fall time: 2.5ms) at the characteristic frequency
(CF) were then presented at different sound pressure levels
(SPL) to construct its rate-intensity curve and poststimulus
time histogram (PSTH). All units presented in this study
were also tested with a train of rarefaction clicks (click
duration: 20 µs) at various train frequencies and intensi-
ties. Intensity of the clicks is expressed as attenuator set-
ting, with minimal thresholds in the auditory nerve being
∼30 dB.

2.4. Data analysis

We classified units into different categories based on
PSTH shape (binwidth: 0.1ms) to short tone burst at CF
[9]. Primary-like (PL) units showed an initial peak in their
PSTH followed by a monotonic decline to a steady state.

Primary-like with notch (PLN) units had a well-timed on-
set response followed by a “notch” of inactivity of a few
milliseconds. Choppers showed a rhythmic response at in-
tervals unrelated to the stimulus period. Oi units showed
an onset response without sustained activity, while OL

showed an onset response followed by a low level of sus-
tained activity. According to previous studies and our un-
published data using single-cell labeling, PL units corre-
spond to spherical bushy cells or auditory nerve fibers;
PLN units correspond to globular bushy cells; Oi corre-
spond to octopus cells; and Chopper units correspond to
T-stellate cells. OL units may not correspond to a single
anatomical cell type and have been associated with octo-
pus cells, globular bushy cells, and other cells. Four super-
ficial units did not fit into any of the previously-mentioned
categories because their PSTH varied with tone intensi-
ties. They had a longer first spike latency compared to
other units and at certain intensities their PSTH shape was
“pauser-buildup”, consistent with previous descriptions of
fusiform cells in the dorsal cochlear nucleus [12, 13]. We
therefore classifiy them as fusiform cells (Fusi). When cal-
culating vector strength and standard deviation of spike
times, spikes in the first 10ms were omitted to characterize
the sustained response. If the sustained response at a given
frequency contained too few samples (<10 spikes across
all trials), the vector strengths and standard deviation of
spike times were not calculated.

3. Results

We tested the responses to click trains at frequencies be-
tween 100 to 1000Hz (duration: 300 or 600ms, 7–20
repetitions per frequency, intensity: 40–55 dB above AN
threshold) from 8 onset units (7 Ois, 1 OL) and compared
them with those from other types of units (3 Choppers, 4
Fusis, 12 PLs, 3 PLNs) recorded in the cochlear nucleus.

Figure 1a shows a typical response of an Oi unit (inten-
sity: 55 dB above AN threshold). The unit showed near-
perfect entrainment (one spike per cycle) to frequencies up
to 400Hz. Above 400Hz, the number of sustained spikes
gradually decreased, and at 1000Hz the response became
almost a pure onset. This trend is reflected in the average
firing rate versus click train frequency, shown in Figure 2a,
where the rate curves of Oi units follow almost exactly
the identity line up to 300 - 400Hz and decrease to lower
values at higher frequencies. Four of the seven Oi units
recorded could entrain to at least 300Hz. Other cell types,
however, did not show this trend and exhibited a rather
flat rate curve (Figure 2a). The OL unit showed entrain-
ment only at 100Hz, which is unexpected given that OL

responses are thought to be associated with octopus cells
in other species.

The spike timing of Oi units relative to each click was
very consistent across trials. This is reflected in their pe-
riod histograms (Figure 1b), vector strength (Figure 2b),
and spike time jitter (Figure 2c). The vector strengths for
click train frequencies below 500Hz were between 0.97
and 1, and even at 700Hz — where skipping of clicks oc-
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Figure 1. (a) Dotraster plot of an Oi unit spiking in response to
300-ms click train stimuli. This unit shows nearly perfect entrain-
ment for train frequencies up to 400Hz. (b) Period histograms of
the spike times in A. Binwidth: 0.01 cycle.

(a)

(b) (c)

Figure 2. Oi units have the highest temporal precision to click
trains compared with other units. (a) Average firing rate from
each unit against click train frequency. Only Oi units show en-
trainment (i.e. overlap with the identity line) over a range of fre-
quencies. (b) Oi units have the highest vector strength (>0.9 for
frequencies up to 700Hz). C: Oi units have the lowest spike jitter
(∼100 µs) to click trains.

curs much more frequently — the vector strength was 0.93
±0.02 (mean ±sd). At 800–1000Hz the vector strength de-
clined, but on average still remained above 0.83. Thus,
even though octopus cells show little post-onset response
to high-frequency click trains (Figure 1, 2a), the few

spikes fired are still synchronized to the click train. The
vector strength of the OL unit was >0.9 below 200Hz, and
declined sharply to <0.4 above 500Hz. For all other units,
except for Choppers and Fusis at 100Hz, vector strengths
were significantly lower than those from Oi units (Mann-
Whitney test for each frequency, p <0.05).

Oi units also had the narrowest spike jitter (standard de-
viation of spike times per cycle) evoked by clicks among
all the cell types tested (Figure 2c). Remarkably, the jit-
ter of Oi units was consistently at ∼100µs even when the
click train frequency increased from 200 to 1000Hz. The
jitter at 100Hz was slightly wider (175 ±216 µs, mean
±sd) because the clicks sometimes evoked a second spike.
Nevertheless, the temporal jitter was significantly lower in
Oi units than in all other cell types for all train frequen-
cies (Mann-Whitney test, p <0.01). Even at frequencies
<300Hz, Oi units were even nearly an order of magnitude
more precise than PL or PLN units, which had spike jit-
ter at around 1.0–1.6ms on average in this range. Surpris-
ingly, Chopper or Fusi units tended to be more temporally
precise at such click-train frequencies than units with PL
or PLN responses. The jitter of the OL was more similar
to that of Chopper or Fusi units, ranging between 0.20–
0.61ms.

4. Discussion

Previous labeling studies have shown an association of the
Oi type response with octopus neurons [4, 6, 8], but in vivo
data from gerbils are lacking. Our study showed that octo-
pus cells, identified by location and Oi response type are
the most temporally precise cell type in the gerbil cochlear
nucleus to click trains. The most remarkable features are
the entrainment up to 400Hz with almost maximal vec-
tor strength and very low spike jitter (∼100 µs). Neurons
with PL responses, presumably mostly AN fibers, showed
no entrainment and had a much lower temporal precision
in this frequency range of click-trains. Since octopus cells
integrate convergent AN inputs [3], our results suggest that
monaural coincidence detection can lead to a ten-fold en-
hancement in spike timing precision for encoding broad-
band transients. Such enhancement is not seen in other cell
types. Properties unique to octopus cells, such as ultrafast
membranes and tonotopic arrangement of AN inputs [14],
may be underlying mechanisms.

One surprising finding in this study is that Chopper
and Fusi responses, usually regarded as rather “sluggish”
neurons due to their integrative membrane properties, re-
sponded to click trains with higher vector strength and
lower temporal jitter than neurons with PL or PLN re-
sponses. Although OL units have been referred to as oc-
topus cells in other species, the only OL unit we collected
did not resemble Oi units in its firing rate and temporal
responses to clicks (Figure 2).

Octopus cells are found in all mammals examined, in-
cluding humans [1]. Although not shown here, we find that
these cells also show precise and entrained responses to
sinusoidally amplitude-modulated stimuli similar to click-
trains. Clearly, these neurons respond with high reliability
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and precision to stimulus transients. It is unclear how these
responses shape neural properties further downstream in
the auditory system, and what their role is in auditory
perception. One modeling study proposed that octopus
cell spiking encodes glottal pulses in speech [15]; an-
other study in chinchilla showed that Oi units exhibited
the strongest phase-locking to fundamental frequency of
single formant-stimuli [16]. The targets of octopus cells,
SPN and VNLL neurons, are inhibitory [1, 2]. Why an in-
hibitory circuit needs such temporally precise excitation is
unclear. Further studies such as recording responses from
midbrain neurons to broadband transients while silencing
these octopus-driven inhibitory pathways may help answer
this question.
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