84 research outputs found

    In Memoriam Richard F. Ayrey (1948 – 2024)

    Get PDF
    This is a memorial issue honoring Richard F. Ayrey (1948 – 2024), a US scorpiologist. A full list of his 26 works is appended, as well as a list of scorpion taxa described by Richard (two genera and 19 species of Vaejovidae), and a map of their type localities in the USA and Mexico

    The Balloon-Borne Large Aperture Submillimeter Telescope Observatory

    Full text link
    The BLAST Observatory is a proposed superpressure balloon-borne polarimeter designed for a future ultra-long duration balloon campaign from Wanaka, New Zealand. To maximize scientific output while staying within the stringent superpressure weight envelope, BLAST will feature new 1.8m off-axis optical system contained within a lightweight monocoque structure gondola. The payload will incorporate a 300L 4^4He cryogenic receiver which will cool 8,274 microwave kinetic inductance detectors (MKIDs) to 100mK through the use of an adiabatic demagnetization refrigerator (ADR) in combination with a 3^3He sorption refrigerator all backed by a liquid helium pumped pot operating at 2K. The detector readout utilizes a new Xilinx RFSOC-based system which will run the next-generation of the BLAST-TNG KIDPy software. With this instrument we aim to answer outstanding questions about dust dynamics as well as provide community access to the polarized submillimeter sky made possible by high-altitude observing unrestricted by atmospheric transmission. The BLAST Observatory is designed for a minimum 31-day flight of which 70%\% will be dedicated to observations for BLAST scientific goals and the remaining 30%\% will be open to proposals from the wider astronomical community through a shared-risk proposals program.Comment: Presented at SPIE Ground-based and Airborne Telescopes VIII, December 13-18, 202

    Response to correspondence on Reproducibility of CRISPR-Cas9 Methods for Generation of Conditional Mouse Alleles: A Multi-Center Evaluation

    Get PDF

    Replication and single-cycle delivery of SARS-CoV-2 replicons

    Get PDF
    Molecular virology tools are critical for basic studies of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and for developing new therapeutics. There remains a need for experimental systems that do not rely on viruses capable of spread that could potentially be used in lower containment settings. Here, we develop spike-deleted SARS-CoV-2 self-replicating RNAs using a yeast-based reverse genetics system. These non-infectious self-replicating RNAs, or replicons, can be trans-complemented with viral glycoproteins to generate Replicon Delivery Particles (RDPs) for single-cycle delivery into a range of cell types. This SARS-CoV-2 replicon system represents a convenient and versatile platform for antiviral drug screening, neutralization assays, host factor validation, and characterizing viral variants

    Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States

    Get PDF
    Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naïve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-wk horizon three to five times larger than when predicting at a 1-wk horizon. This project underscores the role that collaboration and active coordination between governmental public-health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks

    The United States COVID-19 Forecast Hub dataset

    Get PDF
    Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages

    Conservation Genetics of the Philippine Tarsier: Cryptic Genetic Variation Restructures Conservation Priorities for an Island Archipelago Primate

    Get PDF
    Acknowledgments We thank the Philippine Department of Environment and Natural Resources for facilitating research, sample collection, and export permits (in particular T. M. Lim, C. Custodio, J. deLeon, and A. Tagtag) necessary for this and related research. Sampling protocols were approved by the University of Kansas Animal Care and Use Committee (IACUC 158-01 to RMB) and protocols to capture, sedate, and harvest ear biopsies from wild tarsiers were approved by the Dartmouth Animal Care and Use Committee (IACUC 10-11-12 and 11-06-06AT to NJD). Thanks are due to J. Quilang for assistance with data and comments on the manuscript. We thank N. Antoque, J. Cantil, and V. Yngente for assistance in the field and anonymous reviewers for comments on previous versions of the manuscript.Author Contributions Conceived and designed the experiments: RMB JAW CDS JAE MS MLD ACD. Performed the experiments: RMB MRMD LVD INA JAE NJD PSO AL MLD ACD CDS. Analyzed the data: KVO AJB CDS. Contributed reagents/materials/analysis tools: RMB KVO AJB CDS JAE LVD GLM. Wrote the paper: RMB JAW CDS JAE MS GLM. Obtained permission and executed field surveys: RMB MRMD LVD MS INA JAE NJD PSO GLM AL MLD ACD CDS.Establishment of conservation priorities for primates is a particular concern in the island archipelagos of Southeast Asia, where rates of habitat destruction are among the highest in the world. Conservation programs require knowledge of taxonomic diversity to ensure success. The Philippine tarsier is a flagship species that promotes environmental awareness and a thriving ecotourism economy in the Philippines. However, assessment of its conservation status has been impeded by taxonomic uncertainty, a paucity of field studies, and a lack of vouchered specimens and genetic samples available for study in biodiversity repositories. Consequently, conservation priorities are unclear. In this study we use mitochondrial and nuclear DNA to empirically infer geographic partitioning of genetic variation and to identify evolutionarily distinct lineages for conservation action. The distribution of Philippine tarsier genetic diversity is neither congruent with expectations based on biogeographical patterns documented in other Philippine vertebrates, nor does it agree with the most recent Philippine tarsier taxonomic arrangement. We identify three principal evolutionary lineages that do not correspond to the currently recognized subspecies, highlight the discovery of a novel cryptic and range-restricted subcenter of genetic variation in an unanticipated part of the archipelago, and identify additional geographically structured genetic variation that should be the focus of future studies and conservation action. Conservation of this flagship species necessitates establishment of protected areas and targeted conservation programs within the range of each genetically distinct variant of the Philippine tarsier.Support for fieldwork was provided by the University of Kansas Biodiversity Institute and Department of Ecology and Evolutionary Biology (to RMB, CDS, and JAE), the National Geographic Society (NGS 8446-08 to RMB, JAW, MS and INA), funds from the Primate Action Fund (to MS), Ewha Womans University (Ewha Global Top5 Grant 2013 to MS), the David and Lucile Packard Foundation (Fellowship in Science and Engineering no. 2007-31754, to NJD), and U.S. National Science Foundation (DEB 0743491 to RMB). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Yeshttp://www.plosone.org/static/editorial#pee
    corecore