15 research outputs found
A Passerine Bird's Evolution Corroborates the Geologic History of the Island of New Guinea
New Guinea is a biologically diverse island, with a unique geologic history and topography that has likely played a role in the evolution of species. Few island-wide studies, however, have examined the phylogeographic history of lowland species. The objective of this study was to examine patterns of phylogeographic variation of a common and widespread New Guinean bird species (Colluricincla megarhyncha). Specifically, we test the mechanisms hypothesized to cause geographic and genetic variation (e.g., vicariance, isolation by distance and founder-effect with dispersal). To accomplish this, we surveyed three regions of the mitochondrial genome and a nuclear intron and assessed differences among 23 of the 30 described subspecies from throughout their range. We found support for eight highly divergent lineages within C. megarhyncha. Genetic lineages were found within continuous lowland habitat or on smaller islands, but all individuals within clades were not necessarily structured by predicted biogeographic barriers. There was some evidence of isolation by distance and potential founder-effects. Mitochondrial DNA sequence divergence among lineages was at a level often observed among different species or even genera of birds (5â11%), suggesting lineages within regions have been isolated for long periods of time. When topographical barriers were associated with divergence patterns, the estimated divergence date for the clade coincided with the estimated time of barrier formation. We also found that dispersal distance and range size are positively correlated across lineages. Evidence from this research suggests that different phylogeographic mechanisms concurrently structure lineages of C. megarhyncha and are not mutually exclusive. These lineages are a result of evolutionary forces acting at different temporal and spatial scales concordant with New Guinea's geological history
The role of historical and contemporary processes on phylogeographic structure and genetic diversity in the Northern Cardinal, Cardinalis cardinalis
Background
Earth history events such as climate change are believed to have played a major role in shaping patterns of genetic structure and diversity in species. However, there is a lag between the time of historical events and the collection of present-day samples that are used to infer contemporary population structure. During this lag phase contemporary processes such as dispersal or non-random mating can erase or reinforce population differences generated by historical events. In this study we evaluate the role of both historical and contemporary processes on the phylogeography of a widespread North American songbird, the Northern Cardinal, Cardinalis cardinalis. Results
Phylogenetic analysis revealed deep mtDNA structure with six lineages across the species\u27 range. Ecological niche models supported the same geographic breaks revealed by the mtDNA. A paleoecological niche model for the Last Glacial Maximum indicated that cardinals underwent a dramatic range reduction in eastern North America, whereas their ranges were more stable in MĂ©xico. In eastern North America cardinals expanded out of glacial refugia, but we found no signature of decreased genetic diversity in areas colonized after the Last Glacial Maximum. Present-day demographic data suggested that population growth across the expansion cline is positively correlated with latitude. We propose that there was no loss of genetic diversity in areas colonized after the Last Glacial Maximum because recent high-levels of gene flow across the region have homogenized genetic diversity in eastern North America. Conclusion
We show that both deep historical events as well as demographic processes that occurred following these events are critical in shaping genetic pattern and diversity in C. cardinalis. The general implication of our results is that patterns of genetic diversity are best understood when information on species history, ecology, and demography are considered simultaneously
The role of historical and contemporary processes on phylogeographic structure and genetic diversity in the Northern Cardinal, Cardinalis cardinalis
<p>Abstract</p> <p>Background</p> <p>Earth history events such as climate change are believed to have played a major role in shaping patterns of genetic structure and diversity in species. However, there is a lag between the time of historical events and the collection of present-day samples that are used to infer contemporary population structure. During this lag phase contemporary processes such as dispersal or non-random mating can erase or reinforce population differences generated by historical events. In this study we evaluate the role of both historical and contemporary processes on the phylogeography of a widespread North American songbird, the Northern Cardinal, <it>Cardinalis cardinalis</it>.</p> <p>Results</p> <p>Phylogenetic analysis revealed deep mtDNA structure with six lineages across the species' range. Ecological niche models supported the same geographic breaks revealed by the mtDNA. A paleoecological niche model for the Last Glacial Maximum indicated that cardinals underwent a dramatic range reduction in eastern North America, whereas their ranges were more stable in MĂ©xico. In eastern North America cardinals expanded out of glacial refugia, but we found no signature of decreased genetic diversity in areas colonized after the Last Glacial Maximum. Present-day demographic data suggested that population growth across the expansion cline is positively correlated with latitude. We propose that there was no loss of genetic diversity in areas colonized after the Last Glacial Maximum because recent high-levels of gene flow across the region have homogenized genetic diversity in eastern North America.</p> <p>Conclusion</p> <p>We show that both deep historical events as well as demographic processes that occurred following these events are critical in shaping genetic pattern and diversity in <it>C. cardinalis</it>. The general implication of our results is that patterns of genetic diversity are best understood when information on species history, ecology, and demography are considered simultaneously.</p
The Carbon Holdings of Northern Ecuador's Mangrove Forests
<p>Within a geographic information systems environment, we combine field measures of mangrove tree diameter, mangrove species distribution, and mangrove tree density with remotely sensed measures of mangrove location and mangrove canopy cover to estimate the mangrove carbon holdings of northern Ecuador. We find that the four northern estuaries of Ecuador contain approximately 7,742,999 t (±15.47 percent) of standing carbon. Of particularly high carbon holdings are the <i>Rhizophora mangle</i>âdominated mangrove stands found in and around the Cayapas-Mataje Ecological Reserve in northern Esmeraldas Province, Ecuador, and certain stands of <i>Rhizophora mangle</i> in and around the Isla CorazĂłn y Fragata Wildlife Refuge in central ManabĂ Province, Ecuador. Our field-driven mangrove carbon estimate is higher than all but one of the comparison models evaluated. We find that basic latitudinal mangrove carbon models performed at least as well, if not better, than the more complex species-based allometric models in predicting standing carbon levels. In addition, we find that improved results occur when multiple models are combined as opposed to relying on any one single model for mangrove carbon estimates. The high level of carbon contained in these mangrove forests, combined with the future atmospheric carbon sequestration potential they offer, makes it a necessity that they are included in any future payment for ecosystem services strategy aimed at using forest systems to offset CO<sub>2</sub> emissions and mitigate predicted CO<sub>2</sub>-driven temperature increases.</p
A comprehensive multilocus phylogeny for the wood-warblers and a revised classification of the Parulidae (Aves)
The birds in the family Parulidaeâcommonly termed the New World warblers or wood-warblersâare a classic model radiation for studies of ecological and behavioral differentiation. Although the monophyly of a âcoreâ wood-warbler clade is well established, no phylogenetic hypothesis for this group has included a full sampling of wood-warbler species diversity. We used parsimony, maximum likelihood, and Bayesian methods to reconstruct relationships among all genera and nearly all wood-warbler species, based on a matrix of mitochondrial DNA (5840 nucleotides) and nuclear DNA (6 loci, 4602 nucleotides) characters. The resulting phylogenetic hypotheses provide a highly congruent picture of wood-warbler relationships, and indicate that the traditional generic classification of these birds recognizes many non-monophyletic groups. We recommend a revised taxonomy in which each of 14 genera (Seiurus, Helmitheros, Mniotilta, Limnothlypis, Protonotaria, Parkesia, Vermivora, Oreothlypis, Geothlypis, Setophaga, Myioborus, Cardellina, Basileuterus, Myiothlypis) corresponds to a well-supported clade; these nomenclatural changes also involve subsuming a number of well-known, traditional wood-warbler genera (Catharopeza, Dendroica, Ergaticus, Euthlypis, Leucopeza, Oporornis, Parula, Phaeothlypis, Wilsonia). We provide a summary phylogenetic hypothesis that will be broadly applicable to investigations of the historical biogeography, processes of diversification, and evolution of trait variation in this well studied avian group
Triple-quadrupole mass spectrometry studies of nitroaromatic emissions from different diesel engines
Dense sampling of bird diversity increases power of comparative genomics
Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity(1-4). Sparse taxon sampling has previously been proposed to confound phylogenetic inference(5), and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families-including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species. A dataset of the genomes of 363 species from the Bird 10,000 Genomes Project shows increased power to detect shared and lineage-specific variation, demonstrating the importance of phylogenetically diverse taxon sampling in whole-genome sequencing.Peer reviewe