61 research outputs found

    Prosomal-width-to-weight relationships in American horseshoe crabs (Limulus polyphemus): examining conversion factors used to estimate landings

    Get PDF
    Horseshoe crabs (Limulus polyphemus) are valued by many stakeholders, including the commercial fishing industry, biomedical companies, and environmental interest groups. We designed a study to test the accuracy of the conversion factors that were used by NOAA Fisheries and state agencies to estimate horseshoe crab landings before mandatory reporting that began in 1998. Our results indicate that the NOAA Fisheries conversion factor consistently overestimates the weight of male horseshoe crabs, particularly those from New England populations. Because of the inaccuracy of this and other conversion factors, states are now mandated to report the number (not biomass) and sex of landed horseshoe crabs. However, accurate estimates of biomass are still necessary for use in prediction models that are being developed to better manage the horseshoe crab fishery. We recommend that managers use the conversion factors presented in this study to convert current landing data from numbers to biomass of harvested horseshoe crabs for future assessments

    Assessment of sampling methods to estimate horseshoe crab (Limulus polyphemus L.) egg density in Delaware Bay

    Get PDF
    Each spring horseshoe crabs (Limulus polyphemus L.) emerge from Delaware Bay to spawn and deposit their eggs on the foreshore of sandy beaches (Shuster and Botton, 1985; Smith et al., 2002a). From mid-May to early June, migratory shorebirds stopover in Delaware Bay and forage heavily on horseshoe crab eggs that have been transported up onto the beach (Botton et al., 1994; Burger et al., 1997; Tsipoura and Burger, 1999). Thus, estimating the quantity of horseshoe crab eggs in Delaware Bay beaches can be useful for monitoring spawning activity and assessing the amount of forage available to migratory shorebirds

    Really Underage Drinkers: Alcohol Use Among Elementary Students

    Full text link
    Despite the current societal concern with underage drinking, little attention has been paid to alcohol use within the preadolescent population. This article presents the proceedings of a symposium held at the 2003 Research Society on Alcoholism meeting in Fort Lauderdale, Florida, that was organized and chaired by John E. Donovan. The intent of the symposium was to kick start research on alcohol use among elementary school children by reviewing what is known regarding drinking in childhood. Presentations included (1) The Epidemiology of Children's Alcohol Use, by John E. Donovan; (2) The Validity of Children's Self-Reports of Alcohol Use, by Sharon L. Leech; (3) Predicting Onset of Drinking From Behavior at Three Years of Age: Influence of Early Child Expectancies and Parental Alcohol Involvement Upon Early First Use, by Robert A. Zucker; and (4) Parent, Peer, and Child Risk Factors for Alcohol Use in Two Cohorts of Elementary School Children, by Carol J. Loveland-Cherry. Presentations indicated the need for better nationwide surveillance of children's experience with alcohol; suggested that children's reports of their use of alcohol tend to be reliable and valid; supported children's alcohol use schemas and parental drinking and alcoholism at child age three as independent predictors of early onset drinking; and showed that onset of drinking before fourth or fifth grade, peer pressure, and parental norms and monitoring predict elementary student alcohol use and misuse.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65944/1/01.ALC.0000113922.77569.4E.pd

    Remote Sensing of Environment: Current status of Landsat program, science, and applications

    Get PDF
    Formal planning and development of what became the first Landsat satellite commenced over 50 years ago in 1967. Now, having collected earth observation data for well over four decades since the 1972 launch of Landsat- 1, the Landsat program is increasingly complex and vibrant. Critical programmatic elements are ensuring the continuity of high quality measurements for scientific and operational investigations, including ground systems, acquisition planning, data archiving and management, and provision of analysis ready data products. Free and open access to archival and new imagery has resulted in a myriad of innovative applications and novel scientific insights. The planning of future compatible satellites in the Landsat series, which maintain continuity while incorporating technological advancements, has resulted in an increased operational use of Landsat data. Governments and international agencies, among others, can now build an expectation of Landsat data into a given operational data stream. International programs and conventions (e.g., deforestation monitoring, climate change mitigation) are empowered by access to systematically collected and calibrated data with expected future continuity further contributing to the existing multi-decadal record. The increased breadth and depth of Landsat science and applications have accelerated following the launch of Landsat-8, with significant improvements in data quality. Herein, we describe the programmatic developments and institutional context for the Landsat program and the unique ability of Landsat to meet the needs of national and international programs. We then present the key trends in Landsat science that underpin many of the recent scientific and application developments and followup with more detailed thematically organized summaries. The historical context offered by archival imagery combined with new imagery allows for the development of time series algorithms that can produce information on trends and dynamics. Landsat-8 has figured prominently in these recent developments, as has the improved understanding and calibration of historical data. Following the communication of the state of Landsat science, an outlook for future launches and envisioned programmatic developments are presented. Increased linkages between satellite programs are also made possible through an expectation of future mission continuity, such as developing a virtual constellation with Sentinel-2. Successful science and applications developments create a positive feedback loop—justifying and encouraging current and future programmatic support for Landsat

    By Any Other Name: Heterologous Replacement of the Escherichia coli RNase P Protein Subunit Has In Vivo Fitness Consequences

    Get PDF
    Bacterial RNase P is an essential ribonucleoprotein composed of a catalytic RNA component (encoded by the rnpB gene) and an associated protein moiety (encoded by rnpA). We construct a system that allows for the deletion of the essential endogenous rnpA copy and for its simultaneous replacement by a heterologous version of the gene. Using growth rate as a proxy, we explore the effects on fitness of heterologous replacement by increasingly divergent versions of the RNase P protein. All of the heterologs tested complement the loss of the endogenous rnpA gene, suggesting that all existing bacterial versions of the rnpA sequence retain the elements required for functional interaction with the RNase P RNA. All replacements, however, exact a cost on organismal fitness, and particularly on the rate of growth acceleration, defined as the time required to reach maximal growth rate. Our data suggest that the similarity of the heterolog to the endogenous version — whether defined at the sequence, structure or codon usage level — does not predict the fitness costs of the replacement. The common assumption that sequence similarity predicts functional similarity requires experimental confirmation and may prove to be an oversimplification

    HD 219134 Revisited: Planet d Transit Upper Limit and Planet f Transit Nondetection with ASTERIA and TESS

    Get PDF
    HD 219134 is a K3V dwarf star with six reported radial-velocity discovered planets. The two innermost planets b and c show transits, raising the possibility of this system to be the nearest (6.53 pc), brightest (V = 5.57) example of a star with a compact multiple transiting planet system. Ground-based searches for transits of planets beyond b and c are not feasible because of the infrequent transits, long transit duration (~5 hr), shallow transit depths (<1%), and large transit time uncertainty (~half a day). We use the space-based telescopes the Arcsecond Space Telescope Enabling Research in Astrophysics (ASTERIA) and the Transiting Exoplanet Survey Satellite (TESS) to search for transits of planets f (P = 22.717 days and M sin i = 7.3 ± 0.04M_⊕) and d (P = 46.859 days and M sin i = 16.7 ± 0.64M_⊕). ASTERIA was a technology demonstration CubeSat with an opportunity for science in an extended program. ASTERIA observations of HD 219134 were designed to cover the 3σ transit windows for planets f and d via repeated visits over many months. While TESS has much higher sensitivity and more continuous time coverage than ASTERIA, only the HD 219134 f transit window fell within the TESS survey's observations. Our TESS photometric results definitively rule out planetary transits for HD 219134 f. We do not detect the Neptune-mass HD 219134 d transits and our ASTERIA data are sensitive to planets as small as 3.6 R_⊕. We provide TESS updated transit times and periods for HD 219134 b and c, which are designated TOI 1469.01 and 1469.02 respectively

    The Consensus Coding Sequence (Ccds) Project: Identifying a Common Protein-Coding Gene Set for the Human and Mouse Genomes

    Get PDF
    Effective use of the human and mouse genomes requires reliable identification of genes and their products. Although multiple public resources provide annotation, different methods are used that can result in similar but not identical representation of genes, transcripts, and proteins. The collaborative consensus coding sequence (CCDS) project tracks identical protein annotations on the reference mouse and human genomes with a stable identifier (CCDS ID), and ensures that they are consistently represented on the NCBI, Ensembl, and UCSC Genome Browsers. Importantly, the project coordinates on manually reviewing inconsistent protein annotations between sites, as well as annotations for which new evidence suggests a revision is needed, to progressively converge on a complete protein-coding set for the human and mouse reference genomes, while maintaining a high standard of reliability and biological accuracy. To date, the project has identified 20,159 human and 17,707 mouse consensus coding regions from 17,052 human and 16,893 mouse genes. Three evaluation methods indicate that the entries in the CCDS set are highly likely to represent real proteins, more so than annotations from contributing groups not included in CCDS. The CCDS database thus centralizes the function of identifying well-supported, identically-annotated, protein-coding regions.National Human Genome Research Institute (U.S.) (Grant number 1U54HG004555-01)Wellcome Trust (London, England) (Grant number WT062023)Wellcome Trust (London, England) (Grant number WT077198

    Standards in semen examination:publishing reproducible and reliable data based on high-quality methodology

    Get PDF
    Biomedical science is rapidly developing in terms of more transparency, openness and reproducibility of scientific publications. This is even more important for all studies that are based on results from basic semen examination. Recently two concordant documents have been published: the 6th edition of the WHO Laboratory Manual for the Examination and Processing of Human Semen, and the International Standard ISO 23162:2021. With these tools, we propose that authors should be instructed to follow these laboratory methods in order to publish studies in peer-reviewed journals, preferable by using a checklist as suggested in an Appendix to this article.Peer reviewe

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore