13 research outputs found

    Environmental enrichment alleviates cognitive and psychomotor alterations and increases adult hippocampal neurogenesis in cocaine withdrawn mice

    Get PDF
    Cocaine is a widely used psychostimulant drug whose repeated exposure induces persistent cognitive/emotional dysregulation, which could be a predictor of relapse in users. However, there is scarce evidence on effective treatments to alleviate these symptoms. Environmental enrichment (EE) has been shown to be associated with improved synaptic function and cellular plasticity changes related to adult hippocampal neurogenesis (AHN), resulting in cognitive enhancement. Therefore, EE could mitigate the negative impact of chronic administration of cocaine in mice and reduce the emotional and cognitive symptoms present during cocaine abstinence. In this study, mice were chronically administered with cocaine for 14 days, and control mice received saline. After the last cocaine or saline dose, mice were submitted to control or EE housing conditions, and they stayed undisturbed for 28 days. Subsequently, mice were evaluated with a battery of behavioural tests for exploratory activity, emotional behaviour, and cognitive performance. EE attenuated hyperlocomotion, induced anxiolytic-like behaviour and alleviated cognitive impairment in spatial memory in the cocaine-abstinent mice. The EE protocol notably upregulated AHN in both control and cocaine-treated mice, though cocaine slightly reduced the number of immature neurons. Altogether, these results demonstrate that EE could enhance hippocampal neuroplasticity ameliorating the behavioural and cognitive consequences of repeated administration of cocaine. Therefore, environmental stimulation may be a useful strategy in the treatment cocaine addiction.This study was funded by the following grants: PSI2015-73,156-JIN to E.C-O. and PSI2017-82604R to L.J.S. (MINECO-AEI cofounded by FEDER), PID2020-114374RB-I00 (funded by MCIN/AEI/10.13039/501100011033) to E.C-O., PID2020-113806RB-I00 to L.J.S. (MICINN) and University of Malaga (B4: ‘Ayudas para Proyectos Puente’ to E. C–O). Authors M. C. M-P., P. T. and S. G-R. hold predoctoral grants from the Spanish Ministry of Science, Innovation and Universities (FPU17/00276 to M. C. M-P.; FPU18/00069 to P. T and FPU18/00941 to S. G-R.). The authors acknowledge the IBIMA's common research support structure of animal experimentation and behaviour (“Centro de Experimentación y Conducta Animal”; University of Malaga) and their staff for their valuable assistance during the behavioural experiments and maintenance of the mice and to Belén García and Carmen Hernández for their help with the confocal microscopy at the Cajal Institute // Funding for open access charge: Universidad de Málaga/CBUA

    GABAergic deficits in absence of LPA1 receptor, associated anxiety-like and coping behaviors, and amelioration by interneuron precursor transplants into the dorsal hippocampus

    Get PDF
    Defects in GABAergic function can cause anxiety- and depression-like behaviors among other neuropsychiatric disorders. Therapeutic strategies using the transplantation of GABAergic interneuron progenitors derived from the medial ganglionic eminence (MGE) into the adult hippocampus reversed the symptomatology in multiple rodent models of interneuron-related pathologies. In turn, the lysophosphatidic acid receptor LPA has been reported to be essential for hippocampal function. Converging evidence suggests that deficits in LPA receptor signaling represent a core feature underlying comparable hippocampal dysfunction and behaviors manifested in common neuropsychiatric conditions. Here, we first analyzed the GABAergic interneurons in the hippocampus of wild-type and maLPA-null mice, lacking the LPA receptor. Our data revealed a reduction in the number of neurons expressing GABA, calcium-binding proteins, and neuropeptides such as somatostatin and neuropeptide Y in the hippocampus of maLPA-null mice. Then, we used interneuron precursor transplants to test links between hippocampal GABAergic interneuron deficit, cell-based therapy, and LPA receptor-dependent psychiatric disease-like phenotypes. For this purpose, we transplanted MGE-derived interneuron precursors into the adult hippocampus of maLPA-null mice, to test their effects on GABAergic deficit and behavioral symptoms associated with the absence of the LPA receptor. Transplant studies in maLPA-null mice showed that grafted cells were able to restore the hippocampal host environment, decrease the anxiety-like behaviors and neutralize passive coping, with no abnormal effects on motor activity. Furthermore, grafted MGE-derived cells maintained their normal differentiation program. These findings reinforce the use of cell-based strategies for brain disorders and suggest that the LPA receptor represents a potential target for interneuron-related neuropsychiatric disorders.This work was supported by grants from the Spanish Ministry of Science, Innovation and Universities, co-funded by the European Regional Development Fund (ERDF, EU), (PSI2017-82604R, to LJS; PSI2017-83408-P to CP; SAF09-07746, to MAD; PI16/01510, to GET) and Andalusian Regional Ministries of Economy, Knowledge, Business and University (SEJ-4515 -to LJS; SEJ1863 to CP) and of Health and Families (Nicolas Monardes Programme to GET)

    Effectiveness of an intervention for improving drug prescription in primary care patients with multimorbidity and polypharmacy:Study protocol of a cluster randomized clinical trial (Multi-PAP project)

    Get PDF
    This study was funded by the Fondo de Investigaciones Sanitarias ISCIII (Grant Numbers PI15/00276, PI15/00572, PI15/00996), REDISSEC (Project Numbers RD12/0001/0012, RD16/0001/0005), and the European Regional Development Fund ("A way to build Europe").Background: Multimorbidity is associated with negative effects both on people's health and on healthcare systems. A key problem linked to multimorbidity is polypharmacy, which in turn is associated with increased risk of partly preventable adverse effects, including mortality. The Ariadne principles describe a model of care based on a thorough assessment of diseases, treatments (and potential interactions), clinical status, context and preferences of patients with multimorbidity, with the aim of prioritizing and sharing realistic treatment goals that guide an individualized management. The aim of this study is to evaluate the effectiveness of a complex intervention that implements the Ariadne principles in a population of young-old patients with multimorbidity and polypharmacy. The intervention seeks to improve the appropriateness of prescribing in primary care (PC), as measured by the medication appropriateness index (MAI) score at 6 and 12months, as compared with usual care. Methods/Design: Design:pragmatic cluster randomized clinical trial. Unit of randomization: family physician (FP). Unit of analysis: patient. Scope: PC health centres in three autonomous communities: Aragon, Madrid, and Andalusia (Spain). Population: patients aged 65-74years with multimorbidity (≥3 chronic diseases) and polypharmacy (≥5 drugs prescribed in ≥3months). Sample size: n=400 (200 per study arm). Intervention: complex intervention based on the implementation of the Ariadne principles with two components: (1) FP training and (2) FP-patient interview. Outcomes: MAI score, health services use, quality of life (Euroqol 5D-5L), pharmacotherapy and adherence to treatment (Morisky-Green, Haynes-Sackett), and clinical and socio-demographic variables. Statistical analysis: primary outcome is the difference in MAI score between T0 and T1 and corresponding 95% confidence interval. Adjustment for confounding factors will be performed by multilevel analysis. All analyses will be carried out in accordance with the intention-to-treat principle. Discussion: It is essential to provide evidence concerning interventions on PC patients with polypharmacy and multimorbidity, conducted in the context of routine clinical practice, and involving young-old patients with significant potential for preventing negative health outcomes. Trial registration: Clinicaltrials.gov, NCT02866799Publisher PDFPeer reviewe

    RICORS2040 : The need for collaborative research in chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) is a silent and poorly known killer. The current concept of CKD is relatively young and uptake by the public, physicians and health authorities is not widespread. Physicians still confuse CKD with chronic kidney insufficiency or failure. For the wider public and health authorities, CKD evokes kidney replacement therapy (KRT). In Spain, the prevalence of KRT is 0.13%. Thus health authorities may consider CKD a non-issue: very few persons eventually need KRT and, for those in whom kidneys fail, the problem is 'solved' by dialysis or kidney transplantation. However, KRT is the tip of the iceberg in the burden of CKD. The main burden of CKD is accelerated ageing and premature death. The cut-off points for kidney function and kidney damage indexes that define CKD also mark an increased risk for all-cause premature death. CKD is the most prevalent risk factor for lethal coronavirus disease 2019 (COVID-19) and the factor that most increases the risk of death in COVID-19, after old age. Men and women undergoing KRT still have an annual mortality that is 10- to 100-fold higher than similar-age peers, and life expectancy is shortened by ~40 years for young persons on dialysis and by 15 years for young persons with a functioning kidney graft. CKD is expected to become the fifth greatest global cause of death by 2040 and the second greatest cause of death in Spain before the end of the century, a time when one in four Spaniards will have CKD. However, by 2022, CKD will become the only top-15 global predicted cause of death that is not supported by a dedicated well-funded Centres for Biomedical Research (CIBER) network structure in Spain. Realizing the underestimation of the CKD burden of disease by health authorities, the Decade of the Kidney initiative for 2020-2030 was launched by the American Association of Kidney Patients and the European Kidney Health Alliance. Leading Spanish kidney researchers grouped in the kidney collaborative research network Red de Investigación Renal have now applied for the Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS) call for collaborative research in Spain with the support of the Spanish Society of Nephrology, Federación Nacional de Asociaciones para la Lucha Contra las Enfermedades del Riñón and ONT: RICORS2040 aims to prevent the dire predictions for the global 2040 burden of CKD from becoming true

    A combination of ascorbic acid and α-tocopherol to test the effectiveness and safety in the fragile X syndrome: study protocol for a phase II, randomized, placebo-controlled trial

    Get PDF
    BACKGROUND: Fragile X syndrome (FXS) is an inherited neurodevelopmental condition characterised by behavioural, learning disabilities, phisical and neurological symptoms. In addition, an important degree of comorbidity with autism is also present. Considered a rare disorder affecting both genders, it first becomes apparent during childhood with displays of language delay and behavioural symptoms. Main aim: To show whether the combination of 10 mg/kg/day of ascorbic acid (vitamin C) and 10 mg/kg/day of α-tocopherol (vitamin E) reduces FXS symptoms among male patients ages 6 to 18 years compared to placebo treatment, as measured on the standardized rating scales at baseline, and after 12 and 24 weeks of treatment. Secondary aims: To assess the safety of the treatment. To describe behavioural and cognitive changes revealed by the Developmental Behaviour Checklist Short Form (DBC-P24) and the Wechsler Intelligence Scale for Children–Revised. To describe metabolic changes revealed by blood analysis. To measure treatment impact at home and in an academic environment. METHODS/DESIGN: A phase II randomized, double-blind pilot clinical trial. Scope: male children and adolescents diagnosed with FXS, in accordance with a standardized molecular biology test, who met all the inclusion criteria and none of the exclusion criteria. Instrumentation: clinical data, blood analysis, Wechsler Intelligence Scale for Children–Revised, Conners parent and teacher rating scale scores and the DBC-P24 results will be obtained at the baseline (t0). Follow up examinations will take place at 12 weeks (t1) and 24 weeks (t2) of treatment. DISCUSSION: A limited number of clinical trials have been carried out on children with FXS, but more are necessary as current treatment possibilities are insufficient and often provoke side effects. In the present study, we sought to overcome possible methodological problems by conducting a phase II pilot study in order to calculate the relevant statistical parameters and determine the safety of the proposed treatment. The results will provide evidence to improve hyperactivity control and reduce behavioural and learning problems using ascorbic acid (vitamin C) and α-tocopherol (vitamin E). The study protocol was approved by the Regional Government Committee for Clinical Trials in Andalusia and the Spanish agency for drugs and health products. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01329770 (29 March 2011

    Sex-Dependent Altered Expression of Cannabinoid Signaling in Hippocampal Astrocytes of the Triple Transgenic Mouse Model of Alzheimer’s Disease: Implications for Controlling Astroglial Activity

    No full text
    Alzheimer’s disease (AD) is a common neurodegenerative disease. In AD-associated neuroinflammation, astrocytes play a key role, finding glial activation both in patients and in animal models. The endocannabinoid system (ECS) is a neurolipid signaling system with anti-inflammatory and neuroprotective properties implicated in AD. Astrocytes respond to external cannabinoid signals and also have their own cannabinoid signaling. Our main objective is to describe the cannabinoid signaling machinery present in hippocampal astrocytes from 3×Tg-AD mice to determine if they are actively involved in the neurodegenerative process. Primary cultures of astrocytes from the hippocampus of 3×Tg-AD and non-Tg offspring were carried out. We analyzed the gene expression of astrogliosis markers, the main components of the ECS and Ca2+ signaling. 3×Tg-AD hippocampal astrocytes show low inflammatory activity (Il1b, Il6, and Gls) and Ca2+ flow (P2rx5 and Mcu), associated with low cannabinoid signaling (Cnr1 and Cnr2). These results were more evident in females. Our study corroborates glial involvement in AD pathology, in which cannabinoid signaling plays an important role. 3×Tg-AD mice born with hippocampal astrocytes with differential gene expression of the ECS associated with an innate attenuation of their activity. In addition, we show that there are sex differences from birth in this AD animal, which should be considered when investigating the pathogenesis of the disease

    The dorsal root ganglion as a target for neurorestoration in neuropathic pain

    No full text
    Neuropathic pain is a severe and chronic condition widely found in the general population. The reason for this is the extensive variety of damage or diseases that can spark this unpleasant constant feeling in patients. During the processing of pain, the dorsal root ganglia constitute an important region where dorsal root ganglion neurons play a crucial role in the transmission and propagation of sensory electrical stimulation. Furthermore, the dorsal root ganglia have recently exhibited a regenerative capacity that should not be neglected in the understanding of the development and resolution of neuropathic pain and in the elucidation of innovative therapies. Here, we will review the complex interplay between cells (satellite glial cells and inflammatory cells) and factors (cytokines, neurotrophic factors and genetic factors) that takes place within the dorsal root ganglia and accounts for the generation of the aberrant excitation of primary sensory neurons occurring in neuropathic pain. More importantly, we will summarize an updated view of the current pharmacologic and nonpharmacologic therapies targeting the dorsal root ganglia for the treatment of neuropathic pain

    A combination of ascorbic acid and α-tocopherol to test the effectiveness and safety in the fragile X syndrome: study protocol for a phase II, randomized, placebo-controlled trial

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0).[Background]: Fragile X syndrome (FXS) is an inherited neurodevelopmental condition characterised by behavioural, learning disabilities, phisical and neurological symptoms. In addition, an important degree of comorbidity with autism is also present. Considered a rare disorder affecting both genders, it first becomes apparent during childhood with displays of language delay and behavioural symptoms.Main aim: To show whether the combination of 10 mg/kg/day of ascorbic acid (vitamin C) and 10 mg/kg/day of α-tocopherol (vitamin E) reduces FXS symptoms among male patients ages 6 to 18 years compared to placebo treatment, as measured on the standardized rating scales at baseline, and after 12 and 24 weeks of treatment. Secondary aims: To assess the safety of the treatment. To describe behavioural and cognitive changes revealed by the Developmental Behaviour Checklist Short Form (DBC-P24) and the Wechsler Intelligence Scale for Children-Revised. To describe metabolic changes revealed by blood analysis. To measure treatment impact at home and in an academic environment. [Methods/Design]: A phase II randomized, double-blind pilot clinical trial. Scope: male children and adolescents diagnosed with FXS, in accordance with a standardized molecular biology test, who met all the inclusion criteria and none of the exclusion criteria. Instrumentation: clinical data, blood analysis, Wechsler Intelligence Scale for Children-Revised, Conners parent and teacher rating scale scores and the DBC-P24 results will be obtained at the baseline (t0). Follow up examinations will take place at 12 weeks (t1) and 24 weeks (t2) of treatment. [Discussion]: A limited number of clinical trials have been carried out on children with FXS, but more are necessary as current treatment possibilities are insufficient and often provoke side effects. In the present study, we sought to overcome possible methodological problems by conducting a phase II pilot study in order to calculate the relevant statistical parameters and determine the safety of the proposed treatment. The results will provide evidence to improve hyperactivity control and reduce behavioural and learning problems using ascorbic acid (vitamin C) and α-tocopherol (vitamin E). The study protocol was approved by the Regional Government Committee for Clinical Trials in Andalusia and the Spanish agency for drugs and health products. [Trial registration]: ClinicalTrials.gov Identifier: NCT01329770 (29 March 2011).The trial protocol is approved and funded by the Spanish Ministry of Health, Research Funds from FEDER-EU (TRA152, EC10-191 and EC11-434), the Health Department of the Andalusian Regional Government (PI09-0507), the Economic Innovation and Science Regional Government (CTS546 and P10-CTS-05704) and the Jerome Lejeune Foundation (Paris, France). YDDO is the recipient of a Nicolas Monarde contract from the Servicio Andaluz de Salud. Consejería de Salud. Junta de Andalucía.Peer Reviewe

    Analysis of Both Lipid Metabolism and Endocannabinoid Signaling Reveals a New Role for Hypothalamic Astrocytes in Maternal Caloric Restriction-Induced Perinatal Programming

    No full text
    Maternal malnutrition in critical periods of development increases the risk of developing short- and long-term diseases in the offspring. The alterations induced by this nutritional programming in the hypothalamus of the offspring are of special relevance due to its role in energy homeostasis, especially in the endocannabinoid system (ECS), which is involved in metabolic functions. Since astrocytes are essential for neuronal energy efficiency and are implicated in brain endocannabinoid signaling, here we have used a rat model to investigate whether a moderate caloric restriction (R) spanning from two weeks prior to the start of gestation to its end induced changes in offspring hypothalamic (a) ECS, (b) lipid metabolism (LM) and/or (c) hypothalamic astrocytes. Monitorization was performed by analyzing both the gene and protein expression of proteins involved in LM and ECS signaling. Offspring born from caloric-restricted mothers presented hypothalamic alterations in both the main enzymes involved in LM and endocannabinoids synthesis/degradation. Furthermore, most of these changes were similar to those observed in hypothalamic offspring astrocytes in culture. In conclusion, a maternal low caloric intake altered LM and ECS in both the hypothalamus and its astrocytes, pointing to these glial cells as responsible for a large part of the alterations seen in the total hypothalamus and suggesting a high degree of involvement of astrocytes in nutritional programming.This research was funded by European Regional Development Funds-European Union (ERDF-EU) and Instituto de Salud Carlos III (ISCIII), grant numbers CP19/00068 and PI19/00343; Consejería de Economía, Conocimien to y Universidad, Junta de Andalucía, grant number P18-TP 5194. J.S. (CPII17/00024) holds a “Miguel Servet II” research contract from the National System of Health, EU-ERDF-ISCIII. P.R. (CP19/00068) holds a “Miguel Servet I” research contract from the National System of Health, ISCIII (CD19/00068), co-funded by ESF (“Investing in your future”).Ye

    The cannabinoid ligand LH-21 reduces anxiety and improves glucose handling in diet-induced obese pre-diabetic mice

    Get PDF
    LH-21 is a triazol derivative that has been described as a low-permeant neutral CB1 antagonist, though its pharmacology is still unclear. It has been associated with anti-obesity actions in obese rats. However, its role in preventing type 2 diabetes (T2D) onset have not been studied yet. Given CB1 receptors remain as potential pharmacological targets to fight against obesity and T2D, we wanted to explore the metabolic impact of this compound in an animal model of obesity and pre-diabetes as well as the lack of relevant actions in related central processes such as anxiety. C57BL/6J mice were rendered obese and pre-diabetic by feeding a high-fat diet for 15 weeks and then treated with LH-21 or vehicle for two weeks. Food intake, body weight and glucose handling were assessed, together with other relevant parameters. Behavioural performance was evaluated by the open field test and the elevated plus maze. LH-21 did not affect food intake nor body weight but it improved glucose handling, displaying tissue-specific beneficial actions. Unexpectedly, LH-21 induced anxiolysis and reverted obesity-induced anxiety, apparently through GPR55 receptor. These results suggest that LH-21 can be a new candidate to fight against diabetes onset. Indeed, this compound shows potential in counteracting obesity-related anxiety
    corecore