228 research outputs found

    Performance of Polyethylene Vapor Barrier Systems in Temperate Climates

    Get PDF
    The performance of nine different vapor barrier systems comprising polyethylene (PE) membranes were assessed. The vapor barrier systems comprised membranes of virgin PE, 100% new PE, regenerated PE and multilayered virgin and regenerated PE. Membranes were joined either with tape suited to the individual system or an adhesive base on butyl rubber. The vapor barrier systems were evaluated and compared using standard laboratory tests. Chemical analytical techniques and physicomechanical tests were used. Mechanical properties were assessed using laboratory tests recommended by the harmonized standard EN 1385. Chemical analyses followed standard laboratory protocols performed with specialized equipment and visual examination. Chemical and mechanical properties were determined before and after exposure to an aging regime comprising 168 days at 70 °C in total. The chemical stability of the plastic present in each membrane was further evaluated after an additional exposure to an aging regime comprising 50 days followed by another 30 days at 70 °C. Additional aging indicated chemical changes in the membrane material with time. However, it was not possible to distinguish between aging properties for membranes containing virgin PE, 100% new PE, regenerated PE or multilayered virgin and regenerated PE

    Hybridization Capture Using Short PCR Products Enriches Small Genomes by Capturing Flanking Sequences (CapFlank)

    Get PDF
    Solution hybridization capture methods utilize biotinylated oligonucleotides as baits to enrich homologous sequences from next generation sequencing (NGS) libraries. Coupled with NGS, the method generates kilo to gigabases of high confidence consensus targeted sequence. However, in many experiments, a non-negligible fraction of the resulting sequence reads are not homologous to the bait. We demonstrate that during capture, the bait-hybridized library molecules add additional flanking library sequences iteratively, such that baits limited to targeting relatively short regions (e.g. few hundred nucleotides) can result in enrichment across entire mitochondrial and bacterial genomes. Our findings suggest that some of the off-target sequences derived in capture experiments are non-randomly enriched, and that CapFlank will facilitate targeted enrichment of large contiguous sequences with minimal prior target sequence information. (Résumé d'auteur

    Identification of African Swine Fever Virus Transcription within Peripheral Blood Mononuclear Cells of Acutely Infected Pigs

    Get PDF
    African swine fever virus (ASFV) has become widespread in Europe, Asia and elsewhere, thereby causing extensive economic losses. The viral genome includes nearly 200 genes, but their expression within infected pigs has not been well characterized previously. In this study, four pigs were infected with a genotype II strain (ASFV POL/2015/Podlaskie); blood samples were collected before inoculation and at both 3 and 6 days later. During this period, a range of clinical signs of infection became apparent in the pigs. From the blood, peripheral blood mononuclear cells (PBMCs) were isolated. The transcription of the ASFV genes was determined using RNAseq on poly(A)+ mRNAs isolated from these cells. Only very low levels of virus transcription were detected in the PBMCs at 3 days post-inoculation (dpi) but, at 6 dpi, extensive transcription was apparent. This was co-incident with a large increase in the level of ASFV DNA within these cells. The pattern of the virus gene expression was very reproducible between the individual pigs. Many highly expressed genes have undefined roles. Surprisingly, some genes with key roles in virus replication were expressed at only low levels. As the functions of individual genes are identified, information about their expression becomes important for understanding their contribution to virus biology.info:eu-repo/semantics/publishedVersio

    Identification of African Swine Fever Virus Transcription within Peripheral Blood Mononuclear Cells of Acutely Infected Pigs

    Get PDF
    African swine fever virus (ASFV) has become widespread in Europe, Asia and elsewhere, thereby causing extensive economic losses. The viral genome includes nearly 200 genes, but their expression within infected pigs has not been well characterized previously. In this study, four pigs were infected with a genotype II strain (ASFV POL/2015/Podlaskie); blood samples were collected before inoculation and at both 3 and 6 days later. During this period, a range of clinical signs of infection became apparent in the pigs. From the blood, peripheral blood mononuclear cells (PBMCs) were isolated. The transcription of the ASFV genes was determined using RNAseq on poly(A)+ mRNAs isolated from these cells. Only very low levels of virus transcription were detected in the PBMCs at 3 days post-inoculation (dpi) but, at 6 dpi, extensive transcription was apparent. This was co-incident with a large increase in the level of ASFV DNA within these cells. The pattern of the virus gene expression was very reproducible between the individual pigs. Many highly expressed genes have undefined roles. Surprisingly, some genes with key roles in virus replication were expressed at only low levels. As the functions of individual genes are identified, information about their expression becomes important for understanding their contribution to virus biology

    Protocol for ADDITION-PRO: a longitudinal cohort study of the cardiovascular experience of individuals at high risk for diabetes recruited from Danish primary care.

    Get PDF
    BACKGROUND: Screening programmes for type 2 diabetes inevitably find more individuals at high risk for diabetes than people with undiagnosed prevalent disease. While well established guidelines for the treatment of diabetes exist, less is known about treatment or prevention strategies for individuals found at high risk following screening. In order to make better use of the opportunities for primary prevention of diabetes and its complications among this high risk group, it is important to quantify diabetes progression rates and to examine the development of early markers of cardiovascular disease and microvascular diabetic complications. We also require a better understanding of the mechanisms that underlie and drive early changes in cardiometabolic physiology. The ADDITION-PRO study was designed to address these issues among individuals at different levels of diabetes risk recruited from Danish primary care. METHODS/DESIGN: ADDITION-PRO is a population-based, longitudinal cohort study of individuals at high risk for diabetes. 16,136 eligible individuals were identified at high risk following participation in a stepwise screening programme in Danish general practice between 2001 and 2006. All individuals with impaired glucose regulation at screening, those who developed diabetes following screening, and a random sub-sample of those at lower levels of diabetes risk were invited to attend a follow-up health assessment in 2009-2011 (n=4,188), of whom 2,082 (50%) attended. The health assessment included detailed measurement of anthropometry, body composition, biochemistry, physical activity and cardiovascular risk factors including aortic stiffness and central blood pressure. All ADDITION-PRO participants are being followed for incident cardiovascular disease and death. DISCUSSION: The ADDITION-PRO study is designed to increase understanding of cardiovascular risk and its underlying mechanisms among individuals at high risk of diabetes. Key features of this study include (i) a carefully characterised cohort at different levels of diabetes risk; (ii) detailed measurement of cardiovascular and metabolic risk factors; (iii) objective measurement of physical activity behaviour; and (iv) long-term follow-up of hard clinical outcomes including mortality and cardiovascular disease. Results will inform policy recommendations concerning cardiovascular risk reduction and treatment among individuals at high risk for diabetes. The detailed phenotyping of this cohort will also allow a number of research questions concerning early changes in cardiometabolic physiology to be addressed.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
    corecore