74 research outputs found

    A Pedagogical Review of Electroweak Symmetry Breaking Scenarios

    Full text link
    We review different avenues of electroweak symmetry breaking explored over the years. This constitutes a timely exercise as the world's largest and the highest energy particle accelerator, namely, the Large Hadron Collider (LHC) at CERN near Geneva, has started running whose primary mission is to find the Higgs or some phenomena that mimic the effects of the Higgs, i.e. to unravel the mysteries of electroweak phase transition. In the beginning, we discuss the Standard Model Higgs mechanism. After that we review the Higgs sector of the Minimal Supersymmetric Standard Model. Then we take up three relatively recent ideas: Little Higgs, Gauge-Higgs Unification, and Higgsless scenarios. For the latter three cases, we first present the basic ideas and restrict our illustration to some instructive toy models to provide an intuitive feel of the underlying dynamics, and then discuss, for each of the three cases, how more realistic scenarios are constructed and how to decipher their experimental signatures. Wherever possible, we provide enough pedagogical details, which the beginners might find useful.Comment: 45 pages, Review based on a series of lectures; v2: 63 pages, substantially expanded, references added, to appear in `Reports on Progress in Physics

    Shear Stress Modulation of Smooth Muscle Cell Marker Genes in 2-D and 3-D Depends on Mechanotransduction by Heparan Sulfate Proteoglycans and ERK1/2

    Get PDF
    During vascular injury, vascular smooth muscle cells (SMCs) and fibroblasts/myofibroblasts (FBs/MFBs) are exposed to altered luminal blood flow or transmural interstitial flow. We investigate the effects of these two types of fluid flows on the phenotypes of SMCs and MFBs and the underlying mechanotransduction mechanisms.Exposure to 8 dyn/cm(2) laminar flow shear stress (2-dimensional, 2-D) for 15 h significantly reduced expression of alpha-smooth muscle actin (alpha-SMA), smooth muscle protein 22 (SM22), SM myosin heavy chain (SM-MHC), smoothelin, and calponin. Cells suspended in collagen gels were exposed to interstitial flow (1 cmH(2)O, approximately 0.05 dyn/cm(2), 3-D), and after 6 h of exposure, expression of SM-MHC, smoothelin, and calponin were significantly reduced, while expression of alpha-SMA and SM22 were markedly enhanced. PD98059 (an ERK1/2 inhibitor) and heparinase III (an enzyme to cleave heparan sulfate) significantly blocked the effects of laminar flow on gene expression, and also reversed the effects of interstitial flow on SM-MHC, smoothelin, and calponin, but enhanced interstitial flow-induced expression of alpha-SMA and SM22. SMCs and MFBs have similar responses to fluid flow. Silencing ERK1/2 completely blocked the effects of both laminar flow and interstitial flow on SMC marker gene expression. Western blotting showed that both types of flows induced ERK1/2 activation that was inhibited by disruption of heparan sulfate proteoglycans (HSPGs).The results suggest that HSPG-mediated ERK1/2 activation is an important mechanotransduction pathway modulating SMC marker gene expression when SMCs and MFBs are exposed to flow. Fluid flow may be involved in vascular remodeling and lesion formation by affecting phenotypes of vascular wall cells. This study has implications in understanding the flow-related mechanobiology in vascular lesion formation, tumor cell invasion, and stem cell differentiation

    Acute Pain and a Motivational Pathway in Adult Rats: Influence of Early Life Pain Experience

    Get PDF
    The importance of neonatal experience upon behaviour in later life is increasingly recognised. The overlap between pain and reward pathways led us to hypothesise that neonatal pain experience influences reward-related pathways and behaviours in adulthood

    A megaxion at 750 GeV as a first hint of low scale string theory

    Full text link
    Journal of High Energy Physics 2016.7 (2016): 021 reproduced by permission of Scuola Internazionale Superiore di Studi Avanzati (SISSA)Low scale string models naturally have axion-like pseudoscalars which couple directly to gluons and photons (but not W’s) at tree level. We show how they typically get tree level masses in the presence of closed string fluxes, consistent with the axion discrete gauge symmetry, in a way akin of the axion monodromy of string inflation and relaxion models. We discuss the possibility that the hints for a resonance at 750 GeV recently reported at ATLAS and CMS could correspond to such a heavy axion state (megaxion). Adjusting the production rate and branching ratios suggest the string scale to be of order Ms ≈ 7–104 TeV, depending on the compactification geometry. If this interpretation was correct, one extra Z’ gauge boson could be produced before reaching the string threshold at LHC and future collidersThis work is partially supported by the grants FPA2012-32828 and FPA2015-65929-P from the MINECO, the ERC Advanced Grant SPLE under contract ERC-2012-ADG-20120216-320421, the Consolider-Ingenio 2010 programme under grant MULTIDARK CSD2009-00064 and the grant SEV-2012-0249 of the “Centro de Excelencia Severo Ochoa” Programm

    Physiological Correlates of Volunteering

    Get PDF
    We review research on physiological correlates of volunteering, a neglected but promising research field. Some of these correlates seem to be causal factors influencing volunteering. Volunteers tend to have better physical health, both self-reported and expert-assessed, better mental health, and perform better on cognitive tasks. Research thus far has rarely examined neurological, neurochemical, hormonal, and genetic correlates of volunteering to any significant extent, especially controlling for other factors as potential confounds. Evolutionary theory and behavioral genetic research suggest the importance of such physiological factors in humans. Basically, many aspects of social relationships and social activities have effects on health (e.g., Newman and Roberts 2013; Uchino 2004), as the widely used biopsychosocial (BPS) model suggests (Institute of Medicine 2001). Studies of formal volunteering (FV), charitable giving, and altruistic behavior suggest that physiological characteristics are related to volunteering, including specific genes (such as oxytocin receptor [OXTR] genes, Arginine vasopressin receptor [AVPR] genes, dopamine D4 receptor [DRD4] genes, and 5-HTTLPR). We recommend that future research on physiological factors be extended to non-Western populations, focusing specifically on volunteering, and differentiating between different forms and types of volunteering and civic participation

    Performance of the CMS muon trigger system in proton-proton collisions at √s = 13 TeV

    Get PDF
    The muon trigger system of the CMS experiment uses a combination of hardware and software to identify events containing a muon. During Run 2 (covering 2015-2018) the LHC achieved instantaneous luminosities as high as 2 × 10 cm s while delivering proton-proton collisions at √s = 13 TeV. The challenge for the trigger system of the CMS experiment is to reduce the registered event rate from about 40 MHz to about 1 kHz. Significant improvements important for the success of the CMS physics program have been made to the muon trigger system via improved muon reconstruction and identification algorithms since the end of Run 1 and throughout the Run 2 data-taking period. The new algorithms maintain the acceptance of the muon triggers at the same or even lower rate throughout the data-taking period despite the increasing number of additional proton-proton interactions in each LHC bunch crossing. In this paper, the algorithms used in 2015 and 2016 and their improvements throughout 2017 and 2018 are described. Measurements of the CMS muon trigger performance for this data-taking period are presented, including efficiencies, transverse momentum resolution, trigger rates, and the purity of the selected muon sample. This paper focuses on the single- and double-muon triggers with the lowest sustainable transverse momentum thresholds used by CMS. The efficiency is measured in a transverse momentum range from 8 to several hundred GeV

    Book Review

    No full text

    TDP-43 Triggers Mitochondrial DNA Release via mPTP to Activate cGAS/STING in ALS

    Get PDF
    Cytoplasmic accumulation of TDP-43 is a disease hallmark for many cases of amyotrophic lateral sclerosis (ALS), associated with a neuroinflammatory cytokine profile related to upregulation of nuclear factor κB (NF-κB) and type I interferon (IFN) pathways. Here we show that this inflammation is driven by the cytoplasmic DNA sensor cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS) when TDP-43 invades mitochondria and releases DNA via the permeability transition pore. Pharmacologic inhibition or genetic deletion of cGAS and its downstream signaling partner STING prevents upregulation of NF-κB and type I IFN induced by TDP-43 in induced pluripotent stem cell (iPSC)-derived motor neurons and in TDP-43 mutant mice. Finally, we document elevated levels of the specific cGAS signaling metabolite cGAMP in spinal cord samples from patients, which may be a biomarker of mtDNA release and cGAS/STING activation in ALS. Our results identify mtDNA release and cGAS/STING activation as critical determinants of TDP-43-associated pathology and demonstrate the potential for targeting this pathway in ALS
    corecore