27 research outputs found

    Morphological and Molecular Characterization of Orchid Fruit Development

    Get PDF
    Efficient seed dispersal in flowering plants is enabled by the development of fruits, which can be either dehiscent or indehiscent. Dehiscent fruits open at maturity to shatter the seeds, while indehiscent fruits do not open and the seeds are dispersed in various ways. The diversity in fruit morphology and seed shattering mechanisms is enormous within the flowering plants. How these different fruit types develop and which molecular networks are driving fruit diversification is still largely unknown, despite progress in eudicot model species. The orchid family, known for its astonishing floral diversity, displays a huge variation in fruit dehiscence types, which have been poorly investigated. We undertook a combined approach to understand fruit morphology and dehiscence in different orchid species to get more insight into the molecular network that underlies orchid fruit development. We describe fruit development in detail for the epiphytic orchid species Erycina pusilla and compare it to two terrestrial orchid species: Cynorkis fastigiata and Epipactis helleborine. Our anatomical analysis provides further evidence for the split carpel model, which explains the presence of three fertile and three sterile valves in most orchid species. Interesting differences were observed in the lignification patterns of the dehiscence zones. While C. fastigiata and E. helleborine develop a lignified layer at the valve boundaries, E. pusilla fruits did not lignify at these boundaries, but formed a cuticle-like layer instead. We characterized orthologs of fruit-associated MADS-domain transcription factors and of the Arabidopsis dehiscence-related genes INDEHISCENT (IND)/HECATE 3 (HEC3), REPLUMLESS (RPL) and SPATULA (SPT)/ALCATRAZ (ALC) in E. pusilla, and found that the key players of the eudicot fruit regulatory network appear well-conserved in monocots. Protein-protein interaction studies revealed that MADS-domain complexes comprised of FRUITFULL (FUL), SEPALLATA (SEP) and AGAMOUS (AG) /SHATTERPROOF (SHP) orthologs can also be formed in E. pusilla, and that the expression of HEC3, RPL, and SPT can be associated with dehiscence zone development similar to Arabidopsis. Our expression analysis also indicates differences, however, which may underlie fruit divergence

    How does eDNA compare to traditional trapping? Detecting mosquito communities in South-African freshwater ponds

    Get PDF
    Improved biomonitoring of mosquitoes requires an in-depth understanding on occurrences of both vector and non-vector species, in larval, and adult stages. Accurate descriptions of the ecological context in which mosquitoes thrive remain limited, particularly for larval stages. The aim of this study was to develop a mixed-amplicon eDNA approach to assess (i) whether mosquito larval communities of stagnant fresh-water bodies can be detected using a Culicidae-specific primer and (ii) how these results compare to traditional trapping of adult mosquitoes. Results from 32 ponds inside and outside Kruger National Park, South Africa show that our primer detected mosquito eDNA. However, it yielded only a subset of the species found using adult trapping methods. Particularly the less frequent and container-breeding species were not found. Our approach provides the first steps toward an eDNA-based method to assess the entire community of larval-stage mosquitoes. It may thereby overcome current taxonomic hurdles presented by morphological identification of larvae. As such, it holds great promise for biomonitoring and ecological studies of mosquitoes

    Landscape level associations between birds, mosquitoes and microclimates:possible consequences for disease transmission?

    Get PDF
    Background: Mosquito-borne diseases are on the rise. While climatic factors have been linked to disease occurrences, they do not explain the non-random spatial distribution in disease outbreaks. Landscape-related factors, such as vegetation structure, likely play a crucial but hitherto unquantified role. Methods: We explored how three critically important factors that are associated with mosquito-borne disease outbreaks: microclimate, mosquito abundance and bird communities, vary at the landscape scale. We compared the co-occurrence of these three factors in two contrasting habitat types (forest versus grassland) across five rural locations in the central part of the Netherlands between June and September 2021. Results: Our results show that forest patches provide a more sheltered microclimate, and a higher overall abundance of birds. When accounting for differences in landscape characteristics, we also observed that the number of mosquitoes was higher in isolated forest patches. Conclusions: Our findings indicate that, at the landscape scale, variation in tree cover coincides with suitable microclimate and high Culex pipiens and bird abundance. Overall, these factors can help understand the non-random spatial distribution of mosquito-borne disease outbreaks. </p

    Lezione 11 MZ 2018

    Get PDF
    Background Mosquito population dynamics are driven by large-scale (e.g. climatological) and small-scale (e.g. ecological) factors. While these factors are known to independently influence mosquito populations, it remains uncertain how drivers that simultaneously operate under natural conditions interact to influence mosquito populations. We, therefore, developed a well-controlled outdoor experiment to assess the interactive effects of two ecological drivers, predation and nutrient availability, on mosquito life history traits under multiple temperature regimes. Methods We conducted a temperature-controlled mesocosm experiment in Kruger National Park, South Africa, with the yellow fever mosquito, Aedes aegypti. We investigated how larval survival, emergence and development rates were impacted by the presence of a locally-common invertebrate predator (backswimmers Anisops varia Fieber (Notonectidae: Hemiptera), nutrient availability (oligotrophic vs eutrophic, reflecting field conditions), water temperature, and interactions between each driver. Results We observed that the effects of predation and temperature both depended on eutrophication. Predation caused lower adult emergence in oligotrophic conditions but higher emergence under eutrophic conditions. Higher temperatures caused faster larval development rates in eutrophic but not oligotrophic conditions. Conclusions Our study shows that ecological bottom-up and top-down drivers strongly and interactively govern mosquito life history traits for Ae. aegypti populations. Specifically, we show that eutrophication can inversely affect predator–prey interactions and mediate the effect of temperature on mosquito survival and development rates. Hence, our results suggest that nutrient pollution can overrule biological constraints on natural mosquito populations and highlights the importance of studying multiple factors

    Blood-feeding patterns of Culex pipiens biotype pipiens and pipiens/molestus hybrids in relation to avian community composition in urban habitats

    No full text
    Abstract Background Culex pipiens sensu stricto (s.s.) is considered the primary vector of Usutu virus and West Nile virus, and consists of two morphologically identical but behaviourally distinct biotypes (Cx. pipiens biotype pipiens and Cx. pipiens biotype molestus) and their hybrids. Both biotypes are expected to differ in their feeding behaviour, and pipiens/molestus hybrids are presumed to display intermediate feeding behaviour. However, the evidence for distinct feeding patterns is scarce, and to date no studies have related differences in feeding patterns to differences in host abundance. Methods Mosquitoes were collected using CO2-baited traps. We collected blood-engorged Cx. pipiens/torrentium specimens from 12 contrasting urban sites, namely six city parks and six residential areas. Blood engorged Cx. pipiens/torrentium mosquitoes were identified to the species and biotype/hybrid level via real-time polymerase chain reaction (PCR). We performed blood meal analysis via PCR and Sanger sequencing. Additionally, avian host communities were surveyed via vocal sounds and/or visual observation. Results We selected 64 blood-engorged Cx. pipiens/torrentium mosquitoes of which we successfully determined the host origin of 55 specimens. Of these, 38 belonged to biotype pipiens, 14 were pipiens/molestus hybrids and the identity of three specimens could not be determined. No blood-engorged biotype molestus or Cx. torrentium specimens were collected. We observed no differences in feeding patterns between biotype pipiens and pipiens/molestus hybrids across different habitats. Avian community composition differed between city parks and residential areas, whereas overall avian abundance did not differ between the two habitat types. Conclusions Our results show the following: (1) Cx. pipiens s.s. feeding patterns did not differ between city parks and residential areas, regardless of whether individuals were identified as biotype pipiens or pipiens/molestus hybrids. (2) We detected differences in host availability between city parks and residential areas. (3) We show that in both urban habitat types, biotype pipiens and pipiens/molestus hybrids fed on both mammalian and avian hosts. This underscores the potential role in arbovirus transmission of biotype pipiens and pipiens/molestus hybrids. Graphical Abstrac

    Distribution of Culex pipiens life stages across urban green and grey spaces in Leiden, The Netherlands

    No full text
    Abstract Background There is an urgent need for cities to become more climate resilient; one of the key strategies is to include more green spaces in the urban environment. Currently, there is a worry that increasing green spaces might increase mosquito nuisance. As such, this study explores a comprehensive understanding of how mosquitoes utilise contrasting grey and green habitats at different life stages and which environmental factors could drive these distributions. Methods We used a setup of six paired locations, park (green) vs. residential (grey) areas in a single model city (Leiden, The Netherlands), where we sampled the abundances of different mosquito life stages (eggs, larvae, adults) and the local microclimatic conditions. In this study, we focused on Culex pipiens s.l., which is the most common and abundant mosquito species in The Netherlands. Results Our results show that while Cx. pipiens ovipositioning rates (number of egg rafts) and larval life stages were far more abundant in residential areas, adults were more abundant in parks. These results coincide with differences in the number of suitable larval habitats (higher in residential areas) and differences in microclimatic conditions (more amenable in parks). Conclusions These findings suggest that Cx. pipiens dispersal may be considerably more important than previously thought, where adult Cx. pipiens seek out the most suitable habitat for survival and breeding success. Our findings can inform more targeted and efficient strategies to mitigate and reduce mosquito nuisance while urban green spaces are increased, which make cities more climate resilient. Graphical Abstrac

    Exploring the evolutionary origin of floral organs of Erycina pusilla, an emerging orchid model system

    No full text
    BACKGROUND: Thousands of flowering plant species attract pollinators without offering rewards, but the evolution of this deceit is poorly understood. Rewardless flowers of the orchid Erycina pusilla have an enlarged median sepal and incised median petal ('lip') to attract oil-collecting bees. These bees also forage on similar looking but rewarding Malpighiaceae flowers that have five unequally sized petals and gland-carrying sepals. The lip of E. pusilla has a 'callus' that, together with winged 'stelidia', mimics these glands. Different hypotheses exist about the evolutionary origin of the median sepal, callus and stelidia of orchid flowers. RESULTS: The evolutionary origin of these organs was investigated using a combination of morphological, molecular and phylogenetic techniques to a developmental series of floral buds of E. pusilla. The vascular bundle of the median sepal indicates it is a first whorl organ but its convex epidermal cells reflect convergence of petaloid features. Expression of AGL6 EpMADS4 and APETALA3 EpMADS14 is low in the median sepal, possibly correlating with its petaloid appearance. A vascular bundle indicating second whorl derivation leads to the lip. AGL6 EpMADS5 and APETALA3 EpMADS13 are most highly expressed in lip and callus, consistent with current models for lip identity. Six vascular bundles, indicating a stamen-derived origin, lead to the callus, stelidia and stamen. AGAMOUS is not expressed in the callus, consistent with its sterilization. Out of three copies of AGAMOUS and four copies of SEPALLATA, EpMADS22 and EpMADS6 are most highly expressed in the stamen. Another copy of AGAMOUS, EpMADS20, and the single copy of SEEDSTICK, EpMADS23, are most highly expressed in the stelidia, suggesting EpMADS22 may be required for fertile stamens. CONCLUSIONS: The median sepal, callus and stelidia of E. pusilla appear to be derived from a sepal, a stamen that gained petal identity, and stamens, respectively. Duplications, diversifying selection and changes in spatial expression of different MADS-box genes shaped these organs, enabling the rewardless flowers of E. pusilla to mimic an unrelated rewarding flower for pollinator attraction. These genetic changes are not incorporated in current models and urge for a rethinking of the evolution of deceptive flowers.status: publishe

    Exploring the evolutionary origin of floral organs of Erycina pusilla, an emerging orchid model system

    Get PDF
    Background: Thousands of flowering plant species attract pollinators without offering rewards, but the evolution of this deceit is poorly understood. Rewardless flowers of the orchid Erycina pusilla have an enlarged median sepal and incised median petal (‘lip’) to attract oil-collecting bees. These bees also forage on similar looking but rewarding Malpighiaceae flowers that have five unequally sized petals and gland-carrying sepals. The lip of E. pusilla has a ‘callus’ that, together with winged ‘stelidia’, mimics these glands. Different hypotheses exist about the evolutionary origin of the median sepal, callus and stelidia of orchid flowers. Results: The evolutionary origin of these organs was investigated using a combination of morphological, molecular and phylogenetic techniques to a developmental series of floral buds of E. pusilla. The vascular bundle of the median sepal indicates it is a first whorl organ but its convex epidermal cells reflect convergence of petaloid features. Expression of AGL6 EpMADS4 and APETALA3 EpMADS14 is low in the median sepal, possibly correlating with its petaloid appearance. A vascular bundle indicating second whorl derivation leads to the lip. AGL6 EpMADS5 and APETALA3 EpMADS13 are most highly expressed in lip and callus, consistent with current models for lip identity. Six vascular bundles, indicating a stamen-derived origin, lead to the callus, stelidia and stamen. AGAMOUS is not expressed in the callus, consistent with its sterilization. Out of three copies of AGAMOUS and four copies of SEPALLATA, EpMADS22 and EpMADS6 are most highly expressed in the stamen. Another copy of AGAMOUS, EpMADS20, and the single copy of SEEDSTICK, EpMADS23, are most highly expressed in the stelidia, suggesting EpMADS22 may be required for fertile stamens. Conclusions: The median sepal, callus and stelidia of E. pusilla appear to be derived from a sepal, a stamen that gained petal identity, and stamens, respectively. Duplications, diversifying selection and changes in spatial expression of different MADS-box genes shaped these organs, enabling the rewardless flowers of E. pusilla to mimic an unrelated rewarding flower for pollinator attraction. These genetic changes are not incorporated in current models and urge for a rethinking of the evolution of deceptive flowers. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0938-7) contains supplementary material, which is available to authorized users

    Morphological and Molecular Characterization of Orchid Fruit Development

    No full text
    Efficient seed dispersal in flowering plants is enabled by the development of fruits, which can be either dehiscent or indehiscent. Dehiscent fruits open at maturity to shatter the seeds, while indehiscent fruits do not open and the seeds are dispersed in various ways. The diversity in fruit morphology and seed shattering mechanisms is enormous within the flowering plants. How these different fruit types develop and which molecular networks are driving fruit diversification is still largely unknown, despite progress in eudicot model species. The orchid family, known for its astonishing floral diversity, displays a huge variation in fruit dehiscence types, which have been poorly investigated. We undertook a combined approach to understand fruit morphology and dehiscence in different orchid species to get more insight into the molecular network that underlies orchid fruit development. We describe fruit development in detail for the epiphytic orchid species Erycina pusilla and compare it to two terrestrial orchid species: Cynorkis fastigiata and Epipactis helleborine. Our anatomical analysis provides further evidence for the split carpel model, which explains the presence of three fertile and three sterile valves in most orchid species. Interesting differences were observed in the lignification patterns of the dehiscence zones. While C. fastigiata and E. helleborine develop a lignified layer at the valve boundaries, E. pusilla fruits did not lignify at these boundaries, but formed a cuticle-like layer instead. We characterized orthologs of fruit-associated MADS-domain transcription factors and of the Arabidopsis dehiscence-related genes INDEHISCENT (IND)/HECATE 3 (HEC3), REPLUMLESS (RPL) and SPATULA (SPT)/ALCATRAZ (ALC) in E. pusilla, and found that the key players of the eudicot fruit regulatory network appear well-conserved in monocots. Protein-protein interaction studies revealed that MADS-domain complexes comprised of FRUITFULL (FUL), SEPALLATA (SEP) and AGAMOUS (AG) /SHATTERPROOF (SHP) orthologs can also be formed in E. pusilla, and that the expression of HEC3, RPL, and SPT can be associated with dehiscence zone development similar to Arabidopsis. Our expression analysis also indicates differences, however, which may underlie fruit divergence.status: publishe
    corecore