869 research outputs found
The emergence of classical behavior in magnetic adatoms
A wide class of nanomagnets shows striking quantum behavior, known as quantum
spin tunneling (QST): instead of two degenerate ground states with opposite
magnetizations, a bonding-antibonding pair forms, resulting in a splitting of
the ground state doublet with wave functions linear combination of two
classically opposite magnetic states, leading to the quenching of their
magnetic moment. Here we study how QST is destroyed and classical behavior
emerges in the case of magnetic adatoms, as the strength of their coupling,
either to the substrate or to each other, is increased. Both spin-substrate and
spin-spin coupling renormalize the QST splitting to zero allowing the
environmental decoherence to eliminate superpositions between classical states,
leading to the emergence of spontaneous magnetization.Comment: 5 pages, 4 figure
Ionic conductivity on a wetting surface
Recent experiments measuring the electrical conductivity of DNA molecules
highlight the need for a theoretical model of ion transport along a charged
surface. Here we present a simple theory based on the idea of unbinding of ion
pairs. The strong humidity dependence of conductivity is explained by the
decrease in the electrostatic self-energy of a separated pair when a layer of
water (with high dielectric constant) is adsorbed to the surface. We compare
our prediction for conductivity to experiment, and discuss the limits of its
applicability.Comment: 5 pages, 3 figures; one section and two illustrations added; figures
updated and discussion added; typo fixe
On the Connection of Anisotropic Conductivity to Tip Induced Space Charge Layers in Scanning Tunneling Spectroscopy of p-doped GaAs
The electronic properties of shallow acceptors in p-doped GaAs{110} are
investigated with scanning tunneling microscopy at low temperature. Shallow
acceptors are known to exhibit distinct triangular contrasts in STM images for
certain bias voltages. Spatially resolved I(V)-spectroscopy is performed to
identify their energetic origin and behavior. A crucial parameter - the STM
tip's work function - is determined experimentally. The voltage dependent
potential configuration and band bending situation is derived. Ways to validate
the calculations with the experiment are discussed. Differential conductivity
maps reveal that the triangular contrasts are only observed with a depletion
layer present under the STM tip. The tunnel process leading to the anisotropic
contrasts calls for electrons to tunnel through vacuum gap and a finite region
in the semiconductor.Comment: 11 pages, 8 figure
Non-mean-field theory of anomalously large double-layer capacitance
Mean-field theories claim that the capacitance of the double-layer formed at
a metal/ionic conductor interface cannot be larger than that of the Helmholtz
capacitor, whose width is equal to the radius of an ion. However, in some
experiments the apparent width of the double-layer capacitor is substantially
smaller. We propose an alternate, non-mean-field theory of the ionic
double-layer to explain such large capacitance values. Our theory allows for
the binding of discrete ions to their image charges in the metal, which results
in the formation of interface dipoles. We focus primarily on the case where
only small cations are mobile and other ions form an oppositely-charged
background. In this case, at small temperature and zero applied voltage dipoles
form a correlated liquid on both contacts. We show that at small voltages the
capacitance of the double-layer is determined by the transfer of dipoles from
one electrode to the other and is therefore limited only by the weak
dipole-dipole repulsion between bound ions, so that the capacitance is very
large. At large voltages the depletion of bound ions from one of the capacitor
electrodes triggers a collapse of the capacitance to the much smaller
mean-field value, as seen in experimental data. We test our analytical
predictions with a Monte Carlo simulation and find good agreement. We further
argue that our ``one-component plasma" model should work well for strongly
asymmetric ion liquids. We believe that this work also suggests an improved
theory of pseudo-capacitance.Comment: 19 pages, 14 figures; some Monte Carlo results and a section about
aqueous solutions adde
Importance of Spin-Orbit Interaction for the Electron Spin Relaxation in Organic Semiconductors
Despite the great interest organic spintronics has recently attracted, there is only a partial understanding of the fundamental physics behind electron spin relaxation in organic semiconductors. Mechanisms based on hyperfine interaction have been demonstrated, but the role of the spin-orbit interaction remains elusive. Here, we report muon spin spectroscopy and time-resolved photoluminescence measurements on two series of molecular semiconductors in which the strength of the spin-orbit interaction has been systematically modified with a targeted chemical substitution of different atoms at a particular molecular site. We find that the spin-orbit interaction is a significant source of electron spin relaxation in these materials
Oscillatory oblique stagnation-point flow toward a plane wall
Two-dimensional oscillatory oblique stagnation-point flow toward a plane wall is investigated. The problem is a eneralisation of the steady oblique stagnation-point flow examined by previous workers. Far from the wall, the flow is composed of an irrotational orthogonal stagnation-point flow with a time-periodic strength, a simple shear flow of constant vorticity, and a time-periodic uniform stream. An exact solution of the Navier-Stokes equations is sought for which the flow streamfunction depends linearly on the coordinate parallel to the wall. The problem formulation reduces to a coupled pair of partial differential equations in time and one spatial variable. The first equation describes the oscillatory orthogonal stagnation-point flow discussed by previous workers. The second equation, which couples to the first, describes the oblique component of the flow. A description of the flow velocity field, the instantaneous streamlines, and the particle paths is sought through numerical solutions of the governing equations and via asymptotic analysis
Leptospira Serovars for Diagnosis of Leptospirosis in Humans and Animals in Africa: Common Leptospira Isolates and Reservoir Hosts
The burden of leptospirosis in humans and animals in Africa is higher than that reported from other parts of the world. However, the disease is not routinely diagnosed in the continent. One of major factors limiting diagnosis is the poor availability of live isolates of locally circulating Leptospira serovars for inclusion in the antigen panel of the gold standard microscopic agglutination test (MAT) for detecting antibodies against leptospirosis. To gain insight in Leptospira serovars and their natural hosts occurring in Tanzania, concomitantly enabling the improvement of the MAT by inclusion of fresh local isolates, a total of 52 Leptospira isolates were obtained from fresh urine and kidney homogenates, collected between 1996 and 2006 from small mammals, cattle and pigs. Isolates were identified by serogrouping, cross agglutination absorption test (CAAT), and molecular typing. Common Leptospira serovars with their respective animal hosts were: Sokoine (cattle and rodents); Kenya (rodents and shrews); Mwogolo (rodents); Lora (rodents); Qunjian (rodent); serogroup Grippotyphosa (cattle); and an unknown serogroup from pigs. Inclusion of local serovars particularly serovar Sokoine in MAT revealed a 10-fold increase in leptospirosis prevalence in Tanzania from 1.9 % to 16.9 % in rodents and 0.26% to 10.75 % in humans. This indicates that local serovars are useful for diagnosis of human and animal leptospirosis in Tanzania and neighbouring countries
Spin dynamics of molecular nanomagnets fully unraveled by four-dimensional inelastic neutron scattering
Molecular nanomagnets are among the first examples of spin systems of finite
size and have been test-beds for addressing a range of elusive but important
phenomena in quantum dynamics. In fact, for short-enough timescales the spin
wavefunctions evolve coherently according to the an appropriate cluster
spin-Hamiltonian, whose structure can be tailored at the synthetic level to
meet specific requirements. Unfortunately, to this point it has been impossible
to determine the spin dynamics directly. If the molecule is sufficiently
simple, the spin motion can be indirectly assessed by an approximate model
Hamiltonian fitted to experimental measurements of various types. Here we show
that recently-developed instrumentation yields the four-dimensional
inelastic-neutron scattering function S(Q,E) in vast portions of reciprocal
space and enables the spin dynamics to be determined with no need of any model
Hamiltonian. We exploit the Cr8 antiferromagnetic ring as a benchmark to
demonstrate the potential of this new approach. For the first time we extract a
model-free picture of the quantum dynamics of a molecular nanomagnet. This
allows us, for example, to examine how a quantum fluctuation propagates along
the ring and to directly test the degree of validity of the
N\'{e}el-vector-tunneling description of the spin dynamics
Influence of film structure and light on charge trapping and dissipation dynamics in spun-cast organic thin-film transistors measured by scanning Kelvin probe microscopy
Herein, time-dependent scanning Kelvin probe microscopy of solution processed organic thin film transistors (OTFTs) reveals a correlation between film microstructure and OTFT device performance with the location of trapped charge within the device channel. The accumulation of the observed trapped charge is concurrent with the decrease in I{sub SD} during operation (V{sub G}=-40 V, V{sub SD}= -10 V). We discuss the charge trapping and dissipation dynamics as they relate to the film structure and show that application of light quickly dissipates the observed trapped charge
- …