3 research outputs found

    Operations of the Sample Analysis at Mars instrument suite onboard the Curiosity rover

    No full text
    International audienceThe Sample Analysis at Mars instrument suite, onboard the Curiosity rover, has been analyzing the martian environment since August 05th 2012, as one of the main tools of the Mars Science Laboratory mission.This suite is composed of three independent but interoperable instruments, namely a Quadrupole Mass Spectrometer, a Tunable Laser Spectrometer and a Gas Chromatograph, plus a sophisticated Sample Manipulation System. SAM is used to analyze soils, rocks and atmosphere. For instance, it detected in situ martian complex organics for the first time, provide us with a several years survey of the atmospheric composition and helped understand how the martian environment evolved through the planet history. At 40 kg, it represents half of the scientific payload weight of Curiosity and is one of the two analytical instruments of the mission. This instrument suite is the result of an international collaboration between the NASA Goddard Space Flight Center, the NASA Jet Propulsion Laboratory and a consortium of French laboratories supported by the Center National d’Études Spatiales (the French space agency).This contribution will present the organization of the SAM operational workflow from the ground infrastructure, to flight operations andlaboratory supporting work. It will also describe how the CNES hosts and supports the SAM team during this exciting mission

    The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests

    Get PDF
    TheSuperCaminstrumentsuiteprovidestheMars2020rover,Perseverance,with a number of versatile remote-sensing techniques that can be used at long distance as well as within the robotic-arm workspace. These include laser-induced breakdown spectroscopy (LIBS), remote time-resolved Raman and luminescence spectroscopies, and visible and in- frared (VISIR; separately referred to as VIS and IR) reflectance spectroscopy. A remote micro-imager (RMI) provides high-resolution color context imaging, and a microphone can be used as a stand-alone tool for environmental studies or to determine physical properties of rocks and soils from shock waves of laser-produced plasmas. SuperCam is built in three parts: The mast unit (MU), consisting of the laser, telescope, RMI, IR spectrometer, and associated electronics, is described in a companion paper. The on-board calibration targets are described in another companion paper. Here we describe SuperCam’s body unit (BU) and testing of the integrated instrument.The BU, mounted inside the rover body, receives light from the MU via a 5.8 m opti- cal fiber. The light is split into three wavelength bands by a demultiplexer, and is routed via fiber bundles to three optical spectrometers, two of which (UV and violet; 245–340 and 385–465 nm) are crossed Czerny-Turner reflection spectrometers, nearly identical to their counterparts on ChemCam. The third is a high-efficiency transmission spectrometer contain- ing an optical intensifier capable of gating exposures to 100 ns or longer, with variable delay times relative to the laser pulse. This spectrometer covers 535–853 nm (105–7070 cm−1 Ra- man shift relative to the 532 nm green laser beam) with 12 cm−1 full-width at half-maximum peak resolution in the Raman fingerprint region. The BU electronics boards interface with the rover and control the instrument, returning data to the rover. Thermal systems maintain a warm temperature during cruise to Mars to avoid contamination on the optics, and cool the detectors during operations on Mars.Results obtained with the integrated instrument demonstrate its capabilities for LIBS, for which a library of 332 standards was developed. Examples of Raman and VISIR spec- troscopy are shown, demonstrating clear mineral identification with both techniques. Lumi- nescence spectra demonstrate the utility of having both spectral and temporal dimensions. Finally, RMI and microphone tests on the rover demonstrate the capabilities of these sub- systems as well

    Isotope ratios of H, C, and O in CO2 and H2O of the Martian atmosphere

    Get PDF
    Stable isotope ratios of H, C, and O are powerful indicators of a wide variety of planetary geophysical processes, and for Mars they reveal the record of loss of its atmosphere and subsequent interactions with its surface such as carbonate formation. We report in situ measurements of the isotopic ratios of D/H and O-18/O-16 in water and C-13/C-12, O-18/O-16, O-17/O-16, and (CO)-C-13-O-18/(CO)-C-12-O-16 in carbon dioxide, made in the martian atmosphere at Gale Crater from the Curiosity rover using the Sample Analysis at Mars (SAM)'s tunable laser spectrometer (TLS). Comparison between our measurements in the modern atmosphere and those of martian meteorites such as ALH 84001 implies that the martian reservoirs of CO2 and H2O were largely established similar to 4 billion years ago, but that atmospheric loss or surface interaction may be still ongoing
    corecore