118 research outputs found
Ocean-wide genomic variation in Gray's beaked whales, Mesoplodon grayi
This is the final version. Available on open access from the Royal Society via the DOI in this recordData accessibility:
Genbank accession codes for mitogenomes are MW645443-MW645463 and raw reads for nuclear genomes can be found in Genbank BioProject ID PRJNA702760. Additional Data and relevant code for this research work are stored in GitHub: https://github.com/Mvwestbury/Dstats-topology-test and have been archived within the Zenodo repository: https://doi.org/10.5281/zenodo.4320997The deep oceans of the Southern Hemisphere are home to several elusive and poorly studied marine megafauna. In the absence of robust observational data for these species, genetic data can aid inferences on population connectivity, demography and ecology. A previous investigation of genetic diversity and population structure in Gray's beaked whale (Mesoplodon grayi) from Western Australia and New Zealand found high levels of mtDNA diversity, no geographic structure and stable demographic history. To further investigate phylogeographic and demographic patterns across their range, we generated complete mitochondrial and partial nuclear genomes of 16 of the individuals previously analysed and included additional samples from South Africa (n = 2) and South Australia (n = 4), greatly expanding the spatial range of genomic data for the species. Gray's beaked whales are highly elusive and rarely observed, and our data represents a unique and geographically broad dataset. We find relatively high levels of diversity in the mitochondrial genome, despite an absence of population structure at the mitochondrial and nuclear level. Demographic analyses suggest these whales existed at stable levels over at least the past 1.1 million years, with an approximately twofold increase in female effective population size approximately 250 thousand years ago, coinciding with a period of increased Southern Ocean productivity, sea surface temperature and a potential expansion of suitable habitat. Our results suggest that Gray's beaked whales are likely to be resilient to near-future ecosystem changes, facilitating their conservation. Our study demonstrates the utility of low-effort shotgun sequencing in providing ecological information on highly elusive species.Lerner Grey Memorial Fund for Marine Research, American Natural History MuseumUniversity of Exeter European Network FundVillum Fonden Young Investigator ProgrammeCarlsberg FoundationIndependent Research Fund Denmark | Natural Sciences, Forskningsprojekt 1Rubicon-NW
Skull ecomorphological variation of narwhals (Monodon monoceros, Linnaeus 1758) and belugas (Delphinapterus leucas, Pallas 1776) reveals phenotype of their hybrids
Narwhals and belugas are toothed whales belonging to the Monodontidae. Belugas have a circumpolar Arctic and sub-Artic distribution while narwhals are restricted to the Atlantic Arctic. Their geographical ranges overlap during winter migrations in the Baffin Bay area (Canada/ West Greenland) and successful interbreeding may occur. Here, we employed geometric morphometrics on museum specimens to explore the cranium and mandible morphology of a known hybrid (NHMD MCE 1356) and the cranium morphology of a putative hybrid (NHMD 1963.44.1.4) relative to skull morphological variation in the parental species. Specifically, we used 3D models of skulls from 69 belugas, 86 narwhals, and the two known/ putative hybrids and 2D left hemi-mandibles from 20 belugas, 64 narwhals and the known hybrid. Skull shape analyses allowed clear discrimination between species. Narwhals are characterised by a relatively short rostrum and wide neurocranium while belugas show a more elongated and narrower cranium. Sexual size dimorphism was detected in narwhals, with males larger than females, but no sexual shape dimorphism was detected in either species (excluding presence/absence of tusks in narwhals). Morphological skull variation was also dependent on different allometric slopes between species and sexes in narwhals. Our analyses showed that the cranium of the known hybrid was phenotypically close to belugas but its 2D hemi-mandible had a narwhal shape and size morphology. Both cranium and mandible were strongly correlated, with the pattern of covariation being similar to belugas. The putative hybrid was a pure male narwhal with extruded teeth. Comparison of genomic DNA supported this result, and stable carbon and nitrogen isotope values suggested that the putative hybrid had a more benthic foraging strategy compared to narwhals. This work demonstrates that although the known hybrid could be discriminated from narwhals and belugas, detection of its affinities with these parental species was dependent on the part of the skull analysed
Recommended from our members
Relationship between early development of spelling and reading
The research reported in this thesis examined the relationship between beginning spelling and reading. More specifically, it focussed on the relationship between the development of early reading and spelling in a context where the approach to early reading instruction includes systematic phonological awareness and decoding instruction. A critical assumption made by proponents of developmental early literacy models is that transfer of skills and knowledge from reading to spelling will occur spontaneously and without formal instruction (Frith, 1980). By contrast instruction-centred approaches make the assumption that there are critical pre-requisite skills that can and should be taught explicitly (Carnine, Silbert & Kameenui, 1997). The difference between these approaches is highlighted in the treatment of invented spelling, a popular activity in Western Australian junior primary classes. A series of studies was undertaken to examine the effect on invented and standard spelling performance of teaching Year 1 children phonological awareness and the strategy of sounding out words. Data were gathered from a range of settings using different research tools. The relationship between phonological awareness and beginning reading and spelling performance was explored initially through a single case study. A post-hoc study was then undertaken with a cohort of students who had received systematic decoding instruction to examine whether proficiency in the decoding of nonwords was related to spelling performance. This permitted an analysis of common sub-skills of decoding and encoding. In the main study the effect on different aspects of reading and spelling performance of using Let\u27s Decode, an approach that includes explicit phonological awareness and systematic decoding instruction, was investigated. In addition, an analysis was made of whether students who received explicit instruction in skills known to contribute to beginning reading and spelling produced superior invented spelling samples. A qualitative analysis was made of the. pre and post invented spelling tests of two pairs of students from the control and intervention groups matched on invented spelling and phonological awareness skills at the beginning of the year, and re tested at the end of Year 1. The final research question involved a single-subject research design to examine the effect of explicit instruction in isolating phonemes in words and prompts to \u27listen for sounds\u27 prior to, and during, the process of spelling words. The single case study revealed a child who was regarded as a competent speller and reader but who could only read words in a familiar context and who had developed a strategy for spelling words based on copying an adult model. This was interpreted as evidence supporting the need for phonological awareness instruction as a pre-requisite for spelling. The post-hoc analysis of a class of students who had received systematic decoding instruction showed that no student classified as a \u27good decoder\u27 could also be classified as a \u27poor speller\u27. This result was considered evidence of a strong link between the phonological knowledge that is required to decode and the role of alphabetic knowledge in spelling. The main study revealed phonological awareness and systematic decoding instruction was associated with superior invented and conventional spelling and reading performance on all reading and spelling measures. Of particular importance was the finding that students who commenced the study with very weak phonological awareness and who subsequently received systematic phonological and decoding instruction showed greater gains in invented spelling than matched students in the control condition. The single subject design showed the effectiveness of phonological awareness individualised instruction on invented spelling for weak students from both intervention and control conditions. It was concluded that the ability to invent spelling is improved when students receive explicit instruction in phonological awareness and systematic decoding but that some students, namely those with persistent weakness in phonological awareness, also require explicit prompts to apply their alphabetic knowledge to spelling words. The implications for instruction of these findings are discussed
Pan-African Genetic Structure in the African Buffalo (Syncerus caffer): Investigating Intraspecific Divergence
The African buffalo (Syncerus caffer) exhibits extreme morphological variability, which has led to controversies about the validity and taxonomic status of the various recognized subspecies. The present study aims to clarify these by inferring the pan-African spatial distribution of genetic diversity, using a comprehensive set of mitochondrial D-loop sequences from across the entire range of the species. All analyses converged on the existence of two distinct lineages, corresponding to a group encompassing West and Central African populations and a group encompassing East and Southern African populations. The former is currently assigned to two to three subspecies (S. c. nanus, S. c. brachyceros, S. c. aequinoctialis) and the latter to a separate subspecies (S. c. caffer). Forty-two per cent of the total amount of genetic diversity is explained by the between-lineage component, with one to seventeen female migrants per generation inferred as consistent with the isolation-with-migration model. The two lineages diverged between 145 000 to 449 000 years ago, with strong indications for a population expansion in both lineages, as revealed by coalescent-based analyses, summary statistics and a star-like topology of the haplotype network for the S. c. caffer lineage. A Bayesian analysis identified the most probable historical migration routes, with the Cape buffalo undertaking successive colonization events from Eastern toward Southern Africa. Furthermore, our analyses indicate that, in the West-Central African lineage, the forest ecophenotype may be a derived form of the savanna ecophenotype and not vice versa, as has previously been proposed. The African buffalo most likely expanded and diverged in the late to middle Pleistocene from an ancestral population located around the current-day Central African Republic, adapting morphologically to colonize new habitats, hence developing the variety of ecophenotypes observed today
Sequence and expression pattern of the germ line marker vasa in honey bees and stingless bees
Queens and workers of social insects differ in the rates of egg laying. Using genomic information we determined the sequence of vasa, a highly conserved gene specific to the germ line of metazoans, for the honey bee and four stingless bees. The vasa sequence of social bees differed from that of other insects in two motifs. By RT-PCR we confirmed the germ line specificity of Amvasa expression in honey bees. In situ hybridization on ovarioles showed that Amvasa is expressed throughout the germarium, except for the transition zone beneath the terminal filament. A diffuse vasa signal was also seen in terminal filaments suggesting the presence of germ line cells. Oocytes showed elevated levels of Amvasa transcripts in the lower germarium and after follicles became segregated. In previtellogenic follicles, Amvasa transcription was detected in the trophocytes, which appear to supply its mRNA to the growing oocyte. A similar picture was obtained for ovarioles of the stingless bee Melipona quadrifasciata, except that Amvasa expression was higher in the oocytes of previtellogenic follicles. The social bees differ in this respect from Drosophila, the model system for insect oogenesis, suggesting that changes in the sequence and expression pattern of vasa may have occurred during social evolution
Scrapheap Challenge: A novel bulk-bone metabarcoding method to investigate ancient DNA in faunal assemblages
Highly fragmented and morphologically indistinct fossil bone is common in archaeological and paleontological deposits but unfortunately it is of little use in compiling faunal assemblages. The development of a cost-effective methodology to taxonomically identify bulk bone is therefore a key challenge. Here, an ancient DNA methodology using high-throughput sequencing is developed to survey and analyse thousands of archaeological bones from southwest Australia. Fossils were collectively ground together depending on which of fifteen stratigraphical layers they were excavated from. By generating fifteen synthetic blends of bulk bone powder, each corresponding to a chronologically distinct layer, samples could be collectively analysed in an efficient manner. A diverse range of taxa, including endemic, extirpated and hitherto unrecorded taxa, dating back to c.46,000 years BP was characterized. The method is a novel, cost-effective use for unidentifiable bone fragments and a powerful molecular tool for surveying fossils that otherwise end up on the taxonomic “scrapheap”
A dated phylogeny and collection records reveal repeated biome shifts in the African genus Coccinia (Cucurbitaceae)
Background: Conservatism in climatic tolerance may limit geographic range expansion and should enhance the effects of habitat fragmentation on population subdivision. Here we study the effects of historical climate change, and the associated habitat fragmentation, on diversification in the mostly sub-Saharan cucurbit genus Coccinia, which has 27 species in a broad range of biota from semi-arid habitats to mist forests. Species limits were inferred from morphology, and nuclear and plastid DNA sequence data, using multiple individuals for the widespread species. Climatic tolerances were assessed from the occurrences of 1189 geo-referenced collections and WorldClim variables.
Results: Nuclear and plastid gene trees included 35 or 65 accessions, representing up to 25 species. The data revealed four species groups, one in southern Africa, one in Central and West African rain forest, one widespread but absent from Central and West African rain forest, and one that occurs from East Africa to southern Africa. A few individuals are differently placed in the plastid and nuclear (LFY) trees or contain two ITS sequence types, indicating hybridization. A molecular clock suggests that the diversification of Coccinia began about 6.9 Ma ago, with most of the extant species diversity dating to the Pliocene. Ancestral biome reconstruction reveals six switches between semi-arid habitats, woodland, and forest, and members of several species pairs differ significantly in their tolerance of different precipitation regimes.
Conclusions: The most surprising findings of this study are the frequent biome shifts (in a relatively small clade) over just 6 - 7 million years and the limited diversification during and since the Pleistocene. Pleistocene climate oscillations may have been too rapid or too shallow for full reproductive barriers to develop among fragmented populations of Coccinia, which would explain the apparently still ongoing hybridization between certain species. Steeper ecological gradients in East Africa and South Africa appear to have resulted in more advanced allopatric speciation there
Global delivery models: the role of talent, speed and time zones in the global outsourcing industry
Global delivery models (GDMs) are transforming the global IT and business process outsourcing industry. GDMs are a new form of client-specific investment promoting service integration with clients by combining client proximity with time-zone spread for 24/7 service operations. We investigate antecedents and contingencies of setting up GDM structures. Based on comprehensive data we show that providers are likely to establish GDM location configurations when clients value access to globally distributed talent and speed of service delivery, in particular when services are highly commoditized. Findings imply that coordination across time zones increasingly affects international operations in business-to-business and born-global industries
The mammals of Angola
Scientific investigations on the mammals of Angola started over 150 years
ago, but information remains scarce and scattered, with only one recent published
account. Here we provide a synthesis of the mammals of Angola based on a thorough
survey of primary and grey literature, as well as recent unpublished records. We present
a short history of mammal research, and provide brief information on each species
known to occur in the country. Particular attention is given to endemic and near endemic
species. We also provide a zoogeographic outline and information on the conservation
of Angolan mammals. We found confirmed records for 291 native species, most of
which from the orders Rodentia (85), Chiroptera (73), Carnivora (39), and
Cetartiodactyla (33). There is a large number of endemic and near endemic species,
most of which are rodents or bats. The large diversity of species is favoured by the wide range of habitats with contrasting environmental conditions, while endemism tends to
be associated with unique physiographic settings such as the Angolan Escarpment. The
mammal fauna of Angola includes 2 Critically Endangered, 2 Endangered, 11
Vulnerable, and 14 Near-Threatened species at the global scale. There are also 12 data
deficient species, most of which are endemics or near endemics to the countryinfo:eu-repo/semantics/publishedVersio
- …