7 research outputs found

    Soft Magnetorotons and Broken-Symmetry States in Bilayer Quantum Hall Ferromagnets

    Full text link
    The recent report on the observation of soft magnetorotons in the dispersion of charge-density excitations across the tunneling gap in coupled bilayers at total Landau level filling factor ÎœT=1\nu_T=1 is reviewed. The inelastic light scattering experiments take advantage of the breakdown of wave-vector conservation that occurs under resonant excitation. The results offer evidence that in the quantum Hall state there is a roton that softens and sharpens markedly when the phase boundary for transitions to highly-correlated compressible states is approached. These findings are interpreted with Hartree-Fock evaluations of the dynamic structure factor. The model includes the effect of disorder in the breakdown of wave-vector conservation and resonance enhancement profiles within a phenomenological approach. These results link the softening of magnetorotons to enhanced excitonic Coulomb interactions in the ferromagnetic bilayers.Comment: 6 pages, 5 figures; conference: EP2DS-1

    Metamorphosis of a Quantum Hall Bilayer State into a Composite Fermion Metal

    Full text link
    Composite fermion metal states emerge in quantum Hall bilayers at total Landau level filling factor ÎœT\nu_T=1 when the tunneling gap collapses by application of in-plane components of the external magnetic field. Evidence of this transformation is found in the continua of spin excitations observed by inelastic light scattering below the spin-wave mode at the Zeeman energy. The low-lying spin modes are interpreted as quasiparticle excitations with simultaneous changes in spin orientation and composite fermion Landau level index.Comment: 4 pages 4 figure

    Effect of surgical experience and spine subspecialty on the reliability of the {AO} Spine Upper Cervical Injury Classification System

    Get PDF
    OBJECTIVE The objective of this paper was to determine the interobserver reliability and intraobserver reproducibility of the AO Spine Upper Cervical Injury Classification System based on surgeon experience (< 5 years, 5–10 years, 10–20 years, and > 20 years) and surgical subspecialty (orthopedic spine surgery, neurosurgery, and "other" surgery). METHODS A total of 11,601 assessments of upper cervical spine injuries were evaluated based on the AO Spine Upper Cervical Injury Classification System. Reliability and reproducibility scores were obtained twice, with a 3-week time interval. Descriptive statistics were utilized to examine the percentage of accurately classified injuries, and Pearson’s chi-square or Fisher’s exact test was used to screen for potentially relevant differences between study participants. Kappa coefficients (Îș) determined the interobserver reliability and intraobserver reproducibility. RESULTS The intraobserver reproducibility was substantial for surgeon experience level (< 5 years: 0.74 vs 5–10 years: 0.69 vs 10–20 years: 0.69 vs > 20 years: 0.70) and surgical subspecialty (orthopedic spine: 0.71 vs neurosurgery: 0.69 vs other: 0.68). Furthermore, the interobserver reliability was substantial for all surgical experience groups on assessment 1 (< 5 years: 0.67 vs 5–10 years: 0.62 vs 10–20 years: 0.61 vs > 20 years: 0.62), and only surgeons with > 20 years of experience did not have substantial reliability on assessment 2 (< 5 years: 0.62 vs 5–10 years: 0.61 vs 10–20 years: 0.61 vs > 20 years: 0.59). Orthopedic spine surgeons and neurosurgeons had substantial intraobserver reproducibility on both assessment 1 (0.64 vs 0.63) and assessment 2 (0.62 vs 0.63), while other surgeons had moderate reliability on assessment 1 (0.43) and fair reliability on assessment 2 (0.36). CONCLUSIONS The international reliability and reproducibility scores for the AO Spine Upper Cervical Injury Classification System demonstrated substantial intraobserver reproducibility and interobserver reliability regardless of surgical experience and spine subspecialty. These results support the global application of this classification system

    An Interdisciplinary Methodology for the Characterization and Visualization of the Heritage of Roadway Corridors

    No full text
    Roads, particularly since the advent of motorized traffic, have hugely impacted contemporary landscapes. Although their significance was noted in the 1980s, specific roadway-heritage studies are scarce. Research in different disciplines has identified certain features of roads, but an integrated approach to roadway heritage or a consensus on what this constitutes are lacking. This article proposes an interdisciplinary methodology to assess roadway heritage. Roadways are interpreted within the framework of semantic openness that currently characterizes heritage studies, territory being the basic element of interpretation. Rather than a fragmented approach to conservation, the research defines integrated heritage configurations where natural, cultural, and historical features combine to produce a cohesive form of heritage. GIS (Geographical information systems) technology is used with an online database to assess the complexity of roadway heritage. ICT (Information and communications technology) strategies to raise public awareness are outlined. The methodology is applied to assess the historical N-340 Mediterranean roadway corridor in Spain

    The Index Expert System: A Knowledge‐Based System to Assist Users in Index Selection

    No full text
    corecore